438
Views
22
CrossRef citations to date
0
Altmetric
Original Article

Ferulic acid enhances the radiation sensitivity of lung and liver carcinoma cells by collapsing redox homeostasis: mechanistic involvement of Akt/p38 MAPK signalling pathway

ORCID Icon, , , , , , & ORCID Icon show all
Pages 944-967 | Received 15 Dec 2018, Accepted 22 Jul 2019, Published online: 02 Oct 2019

References

  • Kaliberov SA, Buchsbaum DJ. Chapter seven–Cancer treatment with gene therapy and radiation therapy. Adv Cancer Res. 2012;115:221–263.
  • De Waele S, Van Belle S. Cancer-related fatigue. Acta Clin Belg. 2010;65(6):378–385.
  • Takita H, Shin KH, Soh AY, et al. Induction therapy of loco-regional non-small-cell lung cancer with reliable response and low toxicity (low dose radiotherapy sensitizes tumor to subsequent chemotherapy?). Lung Cancer. 2009;63(3):387–392.
  • Nambiar D, Rajamani P, Singh RP. Effects of phytochemicals on ionization radiation-mediated carcinogenesis and cancer therapy. Mutat Res. 2011;728(3):139–157.
  • Yagi K, Ohishi N. Action of ferulic acid and its derivatives as antioxidants. J Nutr Sci Vitaminol (Tokyo). 1979;25(2):127–130.
  • Maurya DK, Salvi VP, Nair CKK. Radiation protection of DNA by ferulic acid under in vitro and in vivo conditions. Mol Cell Biochem. 2005;280(1–2):209–217.
  • Das U, Manna K, Khan A, et al. Ferulic acid (FA) abrogates γ-radiation induced oxidative stress and DNA damage by up-regulating nuclear translocation of Nrf2 and activation of NHEJ pathway. Free Radic Res. 2017;51(1):47–63.
  • Das U, Manna K, Sinha M, et al. Role of ferulic acid in the amelioration of ionizing radiation induced inflammation: a murine model. PLOS ONE. 2014;9(5):e97599.
  • Das U, Biswas S, Sengupta A, et al. Ferulic acid (FA) abrogates ionizing radiation-induced oxidative damage in murine spleen. Int J Radiat Biol. 2016;92(12):806–818.
  • Das U, Sengupta A, Biswas S, et al. Alteration of murine duodenal morphology and redox signalling events by reactive oxygen species generated after whole body γ-irradiation and its prevention by ferulic acid. Free Radic Res. 2017;51(11–12):886–910.
  • El-Mesallamy HO, Gawish RA, Sallam AM, et al. Ferulic acid protects against radiation-induced testicular damage in male rats: impact on SIRT1 and PARP1. Environ Sci Pollut Res Int. 2018;25(7):6218–6227.
  • Shao S, Gao Y, Liu J, et al. Ferulic acid mitigates radiation injury in human umbilical vein endothelial cells in vitro via the thrombomodulin pathway. Radiat Res. 2018;190(3):298–308.
  • Dodurga Y, Eroğlu C, Seçme M, et al. Anti-proliferative and anti-invasive effects of ferulic acid in TT medullary thyroid cancer cells interacting with URG4/URGCP. Tumour Biol. 2016;37(2):1933–1940.
  • Karthikeyan S, Kanimozhi G, Prasad NR, et al. Radiosensitizing effect of ferulic acid on human cervical carcinoma cells in vitro. Toxicol Vitro. 2011;25(7):1366–1375.
  • Bandugula VR, N RP. 2-Deoxy-D-glucose and ferulic acid modulates radiation response signaling in non-small cell lung cancer cells. Tumour Biol. 2013;34(1): 251–259.
  • DeLisser H, Liu Y, Desprez PY, et al. Vascular endothelial platelet endothelial cell adhesion molecule 1 (PECAM-1) regulates advanced metastatic progression. Proc Natl Acad Sci USA. 2010;107(43):18616–18621.
  • Cheng JCH, Chou CH, Kuo ML, et al. Radiation-enhanced hepatocellular carcinoma cell invasion with MMP-9 expression through PI3K/Akt/NF-kappaB signal transduction pathway. Oncogene 2006;25(53):7009–7018.
  • Das U, Biswas S, Chattopadhyay S, et al. Radiosensitizing effect of ellagic acid on growth of Hepatocellular carcinoma cells: an in vitro study. Sci Rep. 2017;7(1):14043.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275.
  • Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979;582(1):67–78.
  • Falah RR, Talib WH, Shbailat SJ. Combination of metformin and curcumin targets breast cancer in mice by angiogenesis inhibition, immune system modulation and induction of p53 independent apoptosis. Ther Adv Med Oncol. 2017;9(4):235–252.
  • Yang GW, Jiang JS, Lu WQ. Ferulic acid exerts anti-angiogenic and anti-tumor activity by targeting fibroblast growth factor receptor 1-mediated angiogenesis. Int J Mol Sci. 2015;16(10):24011–24031.
  • Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010;44(5):479–496.
  • Sundaresan M, Yu ZX, Ferrans VJ, et al. Requirement for generation of H2O2 for platelet derived growth factor signal transduction. Science. 1995;270(5234):296–299.
  • Vaughn AE, Deshmukh M. Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat Cell Biol. 2008;10(12):1477–1483.
  • Schafer ZT, Grassian AR, Song L, et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature. 2009;461(7260):109–113.
  • Giannoni E, Buricchi F, Raugei G, et al. Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol. 2005;25(15):6391–6403.
  • Lee SR, Yang KS, Kwon J, et al. Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem. 2002;277(23):20336–20342.
  • Cao J, Schulte J, Knight A, et al. Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity. EMBO J. 2009;28(10):1505–1517.
  • Kim W, Seong KM, Youn BH. Phenylpropanoids in radioregulation: double edged sword. Exp Mol Med. 2011;43(6):323–333.
  • Doherty JR, Cleveland JL. Targeting lactate metabolism for cancer therapeutics. J Clin Invest. 2013;123(9):3685–3692.
  • Wike-Hooley JL, Haveman J, Reinhold HS. The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol. 1984;2(4):343–366.
  • Feron O. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol. 2009;92(3):329–333.
  • Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95.
  • Lindholm PF, Bub J, Kaul S, et al. The role of constitutive NF-kappaB activity in PC-3 human prostate cancer cell invasive behavior. Clin Exp Metastasis. 2000;18(6):471–479.
  • Nakayama H, Ikebe T, Beppu M, et al. High expression levels of nuclear factor kappaB, IkappaB kinase alpha and Akt kinase in squamous cell carcinoma of the oral cavity. Cancer. 2001;92(12):3037–3044.
  • Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010;21(1):11–19.
  • Ma XT, Wang S, Ye YJ, et al. Constitutive activation of Stat3 signaling pathway in human colorectal carcinoma. World J Gastroenterol. 2004;10(11):1569–1573.
  • Kusaba T, Nakayama T, Yamazumi K, et al. Activation of STAT3 is a marker of poor prognosis in human colorectal cancer. Oncol Rep. 2006;15(6):1445–1451.
  • Haupt S, Berger M, Goldberg Z, et al. Apoptosis – the p53 network. J Cell Sci. 2003;116(20):4077–4085.
  • Brady HJ, Salomons GS, Bobeldijk RC, et al. T cells from baxalpha transgenic mice show accelerated apoptosis in response to stimuli but do not show restored DNA damage-induced cell death in the absence of p53. EMBO J. 1996;15(6):1221–1230.
  • Chen Y-J, Liao HF, Tsai TH, et al. Caffeic acid phenethyl ester preferentially sensitizes CT26 colorectal adenocarcinoma to ionizing radiation without affecting bone marrow radioresponse. Int J Radiat Oncol Biol Phys. 2005;63(4):1252–1261.
  • Moss RW. Do antioxidants interfere with radiation therapy for cancer? Integr Cancer Ther. 2007;6(3):281–292.
  • Prasad KN, Cole WC, Kumar B, et al. Pros and cons of antioxidant use during radiation therapy. Cancer Treat Rev. 2002;28(2):79–91.
  • Simone CB, Simone NL, Simone V, et al. Antioxidants and other nutrients do not interfere with chemotherapy or radiation therapy and can increase kill and increase survival, part 1. Altern Ther Health Med. 2007;13:22–28.
  • Sun C, Wang ZH, Liu XX, et al. Disturbance of redox status enhances radiosensitivity of hepatocellular carcinoma. Am J Cancer Res. 2015;5(4):1368–1381.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.