7,586
Views
12
CrossRef citations to date
0
Altmetric
Review Articles

Qualitative analysis of phospholipids and their oxidised derivatives – used techniques and examples of their applications related to lipidomic research and food analysis

, , &
Pages 1068-1100 | Received 27 Feb 2019, Accepted 09 Aug 2019, Published online: 05 Sep 2019

References

  • Küllenberg de Gaudry D, Taylor La, Schneider M, et al. Health effects of dietary phospholipids. Lipids Health Dis. 2012;11:1–16.
  • Molendi-Coste O, Legry V, Leclercq IA. Why and how meet n-3 PUFA dietary recommendations? Gastroenterol Res Pract. 2011;2011:364040.
  • Blesso CN. Egg phospholipids and cardiovascular health. Nutrients. 2015;7(4):2731–2747.
  • Ahn SH, Lim SJ, Ryu YM, et al. Absorption rate of krill oil and fish oil in blood and brain of rats. Lipids Health Dis. 2018;17(1):162.
  • Choi JY, Jang JS, Son DJ, et al. Antarctic krill oil diet protects against lipopolysaccharide-induced oxidative stress, neuroinflammation and cognitive impairment. Int J Mol Sci. 2017;18(12):1–15.
  • Ursoniu S, Sahebkar A, Serban MC, et al. Lipid-modifying effects of krill oil in humans: systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2017;75(5):361–373.
  • Burri L, Hoem N, Banni S, et al. Marine Omega-3 phospholipids: metabolism and biological activities. Int J Mol Sci. 2012;13(11):15401–15419.
  • Taylor LA, Pletschen L, Arends J, et al. Marine phospholipids – a promising new dietary approach to tumor-associated weight loss. Support Care Cancer. 2010;18(2):159–170.
  • Wąsowicz E, Gramza A, Hęś M, et al. Oxidation of lipids in foods. Pol J Food Nutr Sci. 2004;13:87–100.
  • Miyamoto S, Dupas C, Murota K, et al. Phospholipid hydroperoxides are detoxified by phospholipase A2 and GSH peroxidase in rat gastric mucosa. Lipids. 2003;38(6):641–649.
  • Ursini F, Zamburlini A, Cazzolato G, et al. Postprandial plasma lipid hydroperoxides: a possible link between diet and atherosclerosis. Free Radic Biol Med. 1998;25(2):250–252.
  • Cohn JS, Kamili A, Wat E, et al. Dietary phospholipids and intestinal cholesterol absorption. Nutrients. 2010;2(2):116–127.
  • Fruhwirth GO, Loidl A, Hermetter A. Oxidized phospholipids: from molecular properties to disease. Biochim Biophys Acta. 2007;1772(7):718–736.
  • Ashraf MZ, Kar NS, Podrez EA. Oxidized phospholipids: biomarker for cardiovascular diseases. Int J Biochem Cell Biol. 2009;41(6):1241–1244.
  • Ravandi A, Babaei S, Leung R, et al. Phospholipids and oxophospholipids in atherosclerotic plaques at different stages of plaque development. Lipids. 2004;39(2):97–109.
  • Hammad LA, Wu G, Saleh MM, et al. Elevated levels of hydroxylated phosphocholine lipids in the blood serum of breast cancer patients. Rapid Commun Mass Spectrom. 2009;23(6):863–876.
  • Kinoshita M, Oikawa S, Hayasaka K, et al. Age-related increases in plasma phosphatidylcholine hydroperoxide concentrations in control subjects and patients with hyperlipidemia. Clin Chem. 2000;46(6 Pt 1):822–828.
  • Gwak YS, Kang J, Leem JW, et al. Oxidized phosphatidylcholine is a marker for neuroinflammation in multiple sclerosis brain. J Neurosci Res. 2007;85(11):2352–2359.
  • Bochkov VN, Oskolkova OV, Birukov KG, et al. Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal. 2010;12(8):1009–1059.
  • Adachi J, Matsushita S, Yoshioka N, et al. Plasma phosphatidylcholine hydroperoxide as a new marker of oxidative stress in alcoholic patients. J Lipid Res. 2004;45(5):967–971.
  • Hyötyläinen T, Bondia-Pons I, Orešič M. Lipidomics in nutrition and food research. Mol Nutr Food Res. 2013;57(8):1306–1318.
  • Ferreri C, Chatgilialoglu C. Membrane lipidomics for personalized health. Chichester: John Wiley & Sons; 2015.
  • Ferreri C, Chatgilialoglu C. Role of fatty acid-based functional lipidomics in the development of molecular diagnostic tools. Expert Rev Mol Diagn. 2012;12(7):767–780.
  • Nicolson GL, Ash ME. Lipid replacement therapy: a natural medicine approach to replacing damaged lipids in cellular membranes and organelles and restoring function. Biochim Biophys Acta. 2014;1838(6):1657–1679.
  • Reis A. Oxidative phospholipidomics in health and disease: achievements, challenges and hopes. Free Radic Biol Med. 2017;111:25–37.
  • Cifuentes A. Food analysis and foodomics. J Chromatogr A. 2009;1216(43):7109.
  • Cifuentes A. Food analysis: present, future, and foodomics. ISRN Anal Chem. 2012;2012:1–16.
  • Herrero M, Simó C, García-Cañas V, et al. Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom Rev. 2012;31(1):49–69.
  • Gorrochategui E, Jaumot J, Lacorte S, et al. Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: overview and workflow. TrAC Trends Anal Chem. 2016;82:425–442.
  • Han X, Gross RW. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci U S A. 1994;91(22):10635–10639.
  • Marto JA, White FM, Seldomridge S, et al. Structural characterization of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 1995;67(21):3979–3984.
  • Schiller J, Arnold K. Application of high resolution 31P NMR spectroscopy to the characterization of the phospholipid composition of tissues and body fluids – a methodological review. Med Sci Monit. 2002;8(11):MT205–MT222.
  • Cajka T, Fiehn O. Comprehensive analysis of lipids in biological systems by liquid chromatography – mass spectrometry. Trends Anal Chem. 2014;61:192–206.
  • Ferreri C, Masi A, Sansone A, et al. Fatty acids in membranes as homeostatic, metabolic and nutritional biomarkers: recent advancements in analytics and diagnostics. Diagnostics. 2016;7(1):1–14.
  • Fahy E, Subramaniam S, Brown HA, et al. A comprehensive classification system for lipids. J Lipid Res. 2005;46(5):839–861.
  • Guo Z, Vikbjerg AF, Xu X. Enzymatic modification of phospholipids for functional applications and human nutrition. Biotechnol Adv. 2005;23(3):203–259.
  • Christie W. Ether lipids. AOCS Lipid Libr. 2016;49:vii-151.
  • Christie W. Long-chain or sphingoid bases. AOCS Lipid Libr. 2016;1–9;141.
  • Mukhamedova KS, Glushenkova AI. Natural phosphonolipids. Chem Nat Compd. 2000;36(4):329–341.
  • Van Nieuwenhuyzen W, Tomás MC. Update on vegetable lecithin and phospholipid technologies. Eur J Lipid Sci Technol. 2008;110(5):472–486.
  • Samhan-Arias AK, Ji J, Demidova OM, et al. Oxidized phospholipids as biomarkers of tissue and cell damage with a focus on cardiolipin. Biochim Biophys Acta. 2012;1818(10):2413–2423.
  • O’Donnell VB. Mass spectrometry analysis of oxidized phosphatidylcholine and phosphatidylethanolamine. Biochim Biophys Acta. 2011;1811(11):818–826.
  • Bochkov V, Gesslbauer B, Mauerhofer C, et al. Pleiotropic effects of oxidized phospholipids. Free Radic Biol Med. 2017;111:6–24.
  • Reis A, Spickett CM. Chemistry of phospholipid oxidation. Biochim Biophys Acta. 2012;1818(10):2374–2387.
  • Zhou L, Zhao M, Bindler F, et al. Identification of oxidation compounds of 1-stearoyl-2-linoleoyl- sn -glycero-3-phosphoethanolamine during thermal oxidation. J Agric Food Chem. 2015;63(43):9615–9620.
  • Peterson BL, Cummings BS. A review of chromatographic methods for the assessment of phospholipids in biological samples. Biomed Chromatogr. 2006;20(3):227–243.
  • Cruz M, Wang M, Frisch-Daiello J, et al. Improved butanol-methanol (BUME) method by replacing acetic acid for lipid extraction of biological samples. Lipids. 2016;51(7):887–896.
  • Birjandi AP, Bojko B, Ning Z, et al. High throughput solid phase microextraction: a new alternative for analysis of cellular lipidome? J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1043:12–19.
  • Garwolińska D, Hewelt-Belka W, Namieśnik J, et al. Rapid characterization of the human breast milk lipidome using a solid-phase microextraction and liquid chromatography-mass spectrometry-based approach. J Proteome Res. 2017;16(9):3200–3208.
  • Ulmer CZ, Jones CM, Yost RA, et al. Optimization of Folch, Bligh-Dyer, and Matyash sample-to-extraction solvent ratios for human plasma-based lipidomics studies. Anal Chim Acta. 2018;1037:351–357.
  • Reis A, Rudnitskaya A, Blackburn GJ, et al. A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J Lipid Res. 2013;54(7):1812–1824.
  • Pellegrino RM, Di Veroli A, Valeri A, et al. LC/MS lipid profiling from human serum: a new method for global lipid extraction. Anal Bioanal Chem. 2014;406(30):7937–7948.
  • Matyash V, Liebisch G, Kurzchalia TV, et al. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49(5):1137–1146.
  • Patterson RE, Ducrocq AJ, McDougall DJ, et al. Comparison of blood plasma sample preparation methods for combined LC-MS lipidomics and metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;1002:260–266.
  • Gil A, Zhang W, Wolters JC, et al. One- vs two-phase extraction: re-evaluation of sample preparation procedures for untargeted lipidomics in plasma samples. Anal Bioanal Chem. 2018;410(23):5859–5870.
  • Löfgren L, Ståhlman M, Forsberg GB, et al. The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J Lipid Res. 2012;53(8):1690–1700.
  • Löfgren L, Forsberg GB, Ståhlman M. The BUME method: a new rapid and simple chloroform-free method for total lipid extraction of animal tissue. Sci Rep. 2016;6:27688.
  • Barrilero R, Gil M, Amigó N, et al. LipSpin: a new bioinformatics tool for quantitative 1H NMR lipid profiling. Anal Chem. 2018;90(3):2031–2040.
  • Pizarro C, Arenzana-Rámila I, Pérez-del-Notario N, et al. Plasma lipidomic profiling method based on ultrasound extraction and liquid chromatography mass spectrometry. Anal Chem. 2013;85(24):12085–12092.
  • Teo CC, Chong WPK, Tan E, et al. Advances in sample preparation and analytical techniques for lipidomics study of clinical samples. TrAC Trends Anal Chem. 2015;66:1–18.
  • Khoomrung S, Chumnanpuen P, Jansa-Ard S, et al. Rapid quantification of yeast lipid using microwave-assisted total lipid extraction and HPLC-CAD. Anal Chem. 2013;85(10):4912–4919.
  • Sarafian MH, Gaudin M, Lewis MR, et al. Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography − mass spectrometry. Anal Chem. 2014;86(12):5766–5774.
  • Stübiger G, Aldover-Macasaet E, Bicker W, et al. Targeted profiling of atherogenic phospholipids in human plasma and lipoproteins of hyperlipidemic patients using MALDI-QIT-TOF-MS/MS. Atherosclerosis. 2012;224(1):177–186.
  • Stübiger G, Belgacem O, Rehulka P, et al. Analysis of oxidized phospholipids by MALDI mass spectrometry using 6-Aza-2-thiothymine together with matrix additives and disposable target surfaces. Anal Chem. 2010;82(13):5502–5510.
  • Liakh I, Pakiet A, Sledzinski T, et al. Modern methods of sample preparation for the analysis of oxylipins in biological samples. Molecules. 2019;24(8):1639.
  • Spickett CM, Reis A, Pitt AR. Identification of oxidized phospholipids by electrospray ionization mass spectrometry and LC-MS using a QQLIT instrument. Free Radic Biol Med. 2011;51(12):2133–2149.
  • Ulmer CZ, Patterson RE, Koelmel JP, et al. A robust lipidomics workflow for mammalian cells, plasma, and tissue using liquid-chromatography high- resolution tandem mass spectrometry. Methods Mol Biol. 2017;1609:91–106.
  • Donato P, Cacciola F, Cichello F, et al. Determination of phospholipids in milk samples by means of hydrophilic interaction liquid chromatography coupled to evaporative light scattering and mass spectrometry detection. J Chromatogr A. 2011;1218(37):6476–6482.
  • Bruun-Jensen L, Colarow L, Skibsted LH. Detection and quantification of phospholipid hydroperoxides in turkey meat extracts by planar chromatography. J Planar Chromatogr. 1995;8:475–479.
  • Hammad SM, Pierce JS, Soodavar F, et al. Blood sphingolipidomics in healthy humans: impact of sample collection methodology. J Lipid Res. 2010;51(10):3074–3087.
  • Gonzalez-Covarrubias V, Dane A, Hankemeier T, et al. The influence of citrate, EDTA, and heparin anticoagulants to human plasma LC–MS lipidomic profiling. Metabolomics. 2013;9(2):337–348.
  • Chua EC, Shui G, Lee IT, et al. Extensive diversity in circadian regulation of plasma lipids and evidence for different circadian metabolic phenotypes in humans. Proc Natl Acad Sci U S A. 2013;110(35):14468–14473.
  • Kasukawa T, Sugimoto M, Hida A, et al. Human blood metabolite timetable indicates internal body time. Proc Natl Acad Sci U S A. 2012;109(37):15036–15041.
  • Aviram R, Manella G, Kopelman N, et al. Lipidomics analyses reveal temporal and spatial lipid organization and uncover daily oscillations in intracellular organelles. Mol Cell. 2016;62(4):636–648.
  • Amézaga J, Arranz S, Urruticoechea A, et al. Altered red blood cell membrane fatty acid profile in cancer patients. Nutrients. 2018;10(12):1–13.
  • Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497–509.
  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–917.
  • Iverson SJ, Lang SL, Cooper MH. Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids. 2001;36(11):1283–1287.
  • Cequier-Sánchez E, Rodríguez C, Ravelo AG, et al. Dichloromethane as a solvent for lipid extraction and assessment of lipid classes and fatty acids from samples of different natures. J Agric Food Chem. 2008;56(12):4297–4303.
  • Mawatari S, Hazeyama S, Morisaki T, et al. Enzymatic measurement of ether phospholipids in human plasma after hydrolysis of plasma with phospholipase A1. Pract Lab Med. 2018;10:44–51.
  • Lee DY, Kind T, Yoon YR, et al. Comparative evaluation of extraction methods for simultaneous mass-spectrometric analysis of complex lipids and primary metabolites from human blood plasma. Anal Bioanal Chem. 2014;406(28):7275–7286.
  • Mung D, Li L. Development of chemical isotope labeling LC-MS for milk metabolomics: comprehensive and quantitative profiling of the amine/phenol submetabolome. Anal Chem. 2017;89(8):4435–4443.
  • Satomi Y, Hirayama M, Kobayashi H. One-step lipid extraction for plasma lipidomics analysis by liquid chromatography mass spectrometry. J Chromatogr B. 2017;1063:93–100.
  • Kiełbowicz G, Micek P, Wawrzeńczyk C. A new liquid chromatography method with charge aerosol detector (CAD) for the determination of phospholipid classes. Application to milk phospholipids. Talanta. 2013;105:28–33.
  • Aoyagi R, Ikeda K, Isobe Y, et al. Comprehensive analyses of oxidized phospholipids using a measured MS/MS spectra library. J Lipid Res. 2017;58(11):2229–2237.
  • Spickett CM, Rennie N, Winter H, et al. Detection of phospholipid oxidation in oxidatively stressed cells by reversed-phase HPLC coupled with positive-ionization electrospray [correction of electroscopy] MS. Biochem J. 2001;355(2):449–457.
  • Haller E, Stübiger G, Lafitte D, et al. Chemical recognition of oxidation-specific epitopes in low-density lipoproteins by a nanoparticle based concept for trapping, enrichment, and liquid chromatography-tandem mass spectrometry analysis of oxidative stress biomarkers. Anal Chem. 2014;86(19):9954–9961.
  • Birjandi AP, Mirnaghi FS, Bojko B, et al. Application of solid phase microextraction for quantitation of polyunsaturated fatty acids in biological fluids. Anal Chem. 2014;86(24):12022–12029.
  • Milojković-Opsenica D, Andri F. High performance thin-layer chromatography. In: Green chromatographic techniques: separation and purification of organic and inorganic analytes. Dordrecht: Springer Science & Business Media; 2013.
  • Handloser D, Widmer V, Reich E. Separation of phospholipids by HPTLC – an investigation of important parameters. J Liq Chromatogr Relat Technol. 2008;31(13):1857–1870.
  • Rabel F, Sherma J. Review of the state of the art of preparative thin-layer chromatography. J Liq Chromatogr Relat Technol. 2017;40(4):165–176.
  • Palusinska-Szysz M, Kania M, Turska-Szewczuk A, et al. Identification of unusual phospholipid fatty acyl compositions of Acanthamoeba castellanii. Plos One. 2014;9(7):e101243.
  • Xu G, Waki H, Kon K, et al. Thin-layer chromatography of phospholipids and their lyso forms: application to determination of extracts from rat hippocampal CA1 region. Microchem J. 1996;53(1):29–33.
  • Tanaka T, Kassai A, Ohmoto M, et al. Quantification of phosphatidic acid in foodstuffs using a thin-layer-chromatography-imaging technique. J Agric Food Chem. 2012;60(16):4156–4161.
  • Fuchs B, Süss R, Teuber K, et al. Lipid analysis by thin-layer chromatography – a review of the current state. J Chromatogr A. 2011;1218(19):2754–2774.
  • Dyńska-Kukulska K, Ciesielski W, Zakrzewski R. The use of a new, modified Dittmer-Lester spray reagent for phospholipid determination by the TLC image analysis technique. Biomed Chromatogr. 2013;27(4):458–465.
  • Helmerich G, Koehler P. Comparison of methods for the quantitative determination of phospholipids in lecithins and flour improvers. J Agric Food Chem. 2003;51(23):6645–6651.
  • Dittmer JC, Lester RL. A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res. 1964;5:126–127.
  • Stillwell W. Membrane reconstitution. In: An introduction to biological membranes. 2nd ed. New York: Elsevier; 2016. p. 273–312.
  • Rhee KS, Del Rosario RR, Dugan LR. Determination of plasmalogens after treating with a 2,4-dinitrophenylhydrazine-phosphoric acid reagent. Lipids. 1967;2(4):334–338.
  • Fuchs B. Analytical methods for (oxidized) plasmalogens: methodological aspects and applications. Free Radic Res. 2015;49(5):599–617.
  • Kriska T, Girotti AW. Separation and quantitation of peroxidized phospholipids using high-performance thin-layer chromatography with tetramethyl-p-phenylenediamine detection. Anal Biochem. 2004;327(1):97–106.
  • Friedman P, Horkko S, Steinberg D, et al. Correlation of antiphospholipid antibody recognition with the structure of synthetic oxidized phospholipids. Importance of Schiff base formation and aldol condensation. J Biol Chem. 2002;277(9):7010–7020.
  • Parchem K, Kusznierewicz B, Chmiel T, et al. Profiling and qualitative assessment of enzymatically and thermally oxidized egg yolk phospholipids using a two-step high-performance liquid chromatography protocol. J Am Oil Chem Soc. 2019;96(6):693–706.
  • Lísa M, Cífková E, Holčapek M. Lipidomic profiling of biological tissues using off-line two-dimensional high-performance liquid chromatography-mass spectrometry. J Chromatogr A. 2011;1218(31):5146–5156.
  • Dugo P, Fawzy N, Cichello F, et al. Stop-flow comprehensive two-dimensional liquid chromatography combined with mass spectrometric detection for phospholipid analysis. J Chromatogr A. 2013;1278:46–53.
  • Kim J, Minkler PE, Salomon RG, et al. Cardiolipin: characterization of distinct oxidized molecular species. J Lipid Res. 2011;52(1):125–135.
  • Jia L, Wang C, Kong H, et al. Plasma phospholipid metabolic profiling and biomarkers of mouse IgA nephropathy. Metabolomics. 2006;2(2):95–104.
  • Kim J, Hoppel CL. Comprehensive approach to the quantitative analysis of mitochondrial phospholipids by HPLC-MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;912:105–114.
  • Buré C, Ayciriex S, Testet E, et al. A single run LC-MS/MS method for phospholipidomics. Anal Bioanal Chem. 2013;405(1):203–213.
  • Anesi A, Guella G. A fast liquid chromatography-mass spectrometry methodology for membrane lipid profiling through hydrophilic interaction liquid chromatography. J Chromatogr A. 2015;1384:44–52.
  • Buszewski B, Noga S. Hydrophilic interaction liquid chromatography (HILIC)–a powerful separation technique. Anal Bioanal Chem. 2012;402(1):231–247.
  • Gama MR, da Costa Silva RG, Collins CH, et al. Hydrophilic interaction chromatography. TrAC Trends Anal Chem. 2012;37:48–60.
  • Schwalbe-Herrmann M, Willmann J, Leibfritz D. Separation of phospholipid classes by hydrophilic interaction chromatography detected by electrospray ionization mass spectrometry. J Chromatogr A. 2010;1217(32):5179–5183.
  • Cífková E, Holčapek M, Lísa M, et al. Nontargeted quantitation of lipid classes using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry with single internal standard and response factor approach. Anal Chem. 2012;84(22):10064–10070.
  • Cífková E, Holčapek M, Lísa M. Nontargeted lipidomic characterization of porcine organs using hydrophilic interaction liquid chromatography and off-line two-dimensional liquid chromatography-electrospray ionization mass spectrometry. Lipids. 2013;48(9):915–928.
  • Holčapek M, Jirásko R, Lísa M. Recent developments in liquid chromatography-mass spectrometry and related techniques. J Chromatogr A. 2012;1259:3–15.
  • Kong P, Lehmann MJ, Helms JB, et al. Lipid analysis of Eimeria sporozoites reveals exclusive phospholipids, a phylogenetic mosaic of endogenous synthesis, and a host-independent lifestyle. Cell Discov. 2018;4:24.
  • Lísa M, Holčapek M. High-throughput and comprehensive lipidomic analysis using ultrahigh-performance supercritical fluid chromatography – mass spectrometry. Anal Chem. 2015;87(14):7187–7195.
  • Caudron E, Zhou JY, Chaminade P, et al. Fluorescence probe assisted post-column detection for lipid analysis in microbore-LC. J Chromatogr A. 2005;1072(2):149–157.
  • Milne GL, Porter NA. Separation and identification of phospholipid peroxidation products. Lipids. 2001;36(11):1265–1275.
  • Sala P, Pötz S, Brunner M, et al. Determination of oxidized phosphatidylcholines by hydrophilic interaction liquid chromatography coupled to Fourier transform mass spectrometry. Int J Mol Sci. 2015;16(4):8351–8363.
  • Stoll DR, Carr PW. Two-dimensional liquid chromatography: a state of the art tutorial. Anal Chem. 2017;89(1):519–531.
  • Carr PW, Stoll DR Two-dimensional liquid chromatography: principles, practical implementation and applications Agilent Technical Note. Germany: Agilent Technologies, Inc.; 2015.
  • Nie H, Liu R, Yang Y, et al. Lipid profiling of rat peritoneal surface layers by online normal- and reversed-phase 2D LC QToF-MS. J Lipid Res. 2010;51(9):2833–2844.
  • Tranchida PQ, Donato P, Cacciola F, et al. Potential of comprehensive chromatography in food analysis. TrAC Trends Anal Chem. 2013;52:186–205.
  • Ostrowska J, Skrzydlewska E, Figaszewski ZA. Isolation and analysis of phospholipids. Chem Anal. 2000;45:613–629.
  • Restuccia D, Spizzirri UG, Puoci F, et al. Determination of phospholipids in food samples. Food Rev Int. 2012;28(1):1–46.
  • Ibusuki D, Nakagawa K, Asai A, et al. Preparation of pure lipid hydroperoxides. J Lipid Res. 2008;49(12):2668–2677.
  • Butler O’Connor ES, Mazerik JN, Cruff JP, et al. Lipoxygenase-catalyzed phospholipid peroxidation: preparation, purification, and characterization of phosphatidylinositol peroxides. In: Uppu RM, Murthy SN, Pryor WA, et al., ed. Free radicals and antioxidant protocols. Methods in molecular biology (methods and protocols). 2nd ed. New York: Humana Press; 2010. p. 387–401.
  • Schweikart F, Hulthe G. HPLC–UV–MS analysis: a source for severe oxidation artifacts. Anal Chem. 2019;91(3):1748–1751.
  • Ibrahim H, Caudron E, Kasselouri A, et al. Interest of fluorescence derivatization and fluorescence probe assisted post-column detection of phospholipids: a short review. Molecules. 2010;15(1):352–373.
  • Ouhazza M, Sioufii AM. Liquid chromatography analysis of some phospholipids with fluorescence detection. Analusis. 1992;20:185–188.
  • Ramos RG, Libong D, Rakotomanga M, et al. Comparison between charged aerosol detection and light scattering detection for the analysis of Leishmania membrane phospholipids. J Chromatogr A. 2008;1209(1–2):88–94.
  • Kiełbowicz G, Trziszka T, Wawrzeńczyk C. Separation and quantification of phospholipid and neutral lipid classes by HPLC–CAD: application to egg yolk lipids. J Liq Chromatogr Relat Technol. 2015;38(8):898–903.
  • Han X, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res. 2003;44(6):1071–1079.
  • Hou W, Zhou H, Elisma F, et al. Technological developments in lipidomics. Brief Funct Genomics Proteomics. 2008;7(5):395–409.
  • Schröter J, Süß R, Schiller J. MALDI-TOF MS to monitor the kinetics of phospholipase A2-digestion of oxidized phospholipids. Methods. 2016;104:41–47.
  • Schröter J, Griesinger H, Reuÿ E, et al. Unexpected products of the hypochlorous acid-induced oxidation of oleic acid: a study using high performance thin-layer chromatography-electrospray ionization mass spectrometry. J Chromatogr A. 2016;1439:89–96.
  • Fuchs B, Schiller J, Süss R, et al. A direct and simple method of coupling matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to thin-layer chromatography (TLC) for the analysis of phospholipids from egg yolk. Anal Bioanal Chem. 2007;389(3):827–834.
  • Schiller J, Süß R, Fuchs B, et al. Combined application of TLC and matrix-assisted laser desorption and ionisation time-of-flight mass spectrometry (MALDI-TOF MS) to phospholipid analysis of brain. Chromatographia. 2003;57(S1):S297–S302.
  • Fuchs B, Schiller J, Süß R, et al. Capabilities and disadvantages of combined matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and high-performance thin-layer chromatography (HPTLC): analysis of egg yolk lipids. JPC J Planar Chromatogr Mod TLC. 2009;22(1):35–42.
  • Domingues MRM, Reis A, Domingues P. Mass spectrometry analysis of oxidized phospholipids. Chem Phys Lipids. 2008;156(1–2):1–12.
  • Reis A, Domingues P, Domingues MRM. Structural motifs in primary oxidation products of palmitoyl-arachidonoyl-phosphatidylcholines by LC-MS/MS. J Mass Spectrom. 2013;48(11):1207–1216.
  • Reis A, Domingues MRM, Amado FML, et al. Radical peroxidation of palmitoyl-lineloyl-glycerophosphocholine liposomes: identification of long-chain oxidised products by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;855(2):186–199.
  • Deeley JM, Thomas MC, Truscott RJW, et al. Identification of abundant alkyl ether glycerophospholipids in the human lens by tandem mass spectrometry techniques. Anal Chem. 2009;81(5):1920–1930.
  • Ali AH, Zou X, Lu J, et al. Identification of phospholipids classes and molecular species in different types of egg yolk by using UPLC-Q-TOF-MS. Food Chem. 2017;221:58–66.
  • Reis A, Domingues P, Ferrer-Correia AJV, et al. Tandem mass spectrometry of intact oxidation products of diacylphosphatidylcholines: evidence for the occurrence of the oxidation of the phosphocholine head and differentiation of isomers. J Mass Spectrom. 2004;39(12):1513–1522.
  • Rathahao-Paris E, Alves S, Junot C, et al. High resolution mass spectrometry for structural identification of metabolites in metabolomics. Metabolomics. 2016;12(1):10
  • Baker PRS, Armando AM, Campbell JL, et al. Three-dimensional enhanced lipidomics analysis combining UPLC, differential ion mobility spectrometry, and mass spectrometric separation strategies. J Lipid Res. 2014;55(11):2432–2442.
  • Ni Z, Milic I, Fedorova M. Identification of carbonylated lipids from different phospholipid classes by shotgun and LC-MS lipidomics. Anal Bioanal Chem. 2015;407(17):5161–5173.
  • Nakanishi H, Iida Y, Shimizu T, et al. Analysis of oxidized phosphatidylcholines as markers for oxidative stress, using multiple reaction monitoring with theoretically expanded data sets with reversed-phase liquid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(13):1366–1374.
  • Spickett CM, Pitt AR. Oxidative lipidomics coming of age: advances in analysis of oxidized phospholipids in physiology and pathology. Antioxid Redox Signal. 2015;22(18):1646–1666.
  • Kliman M, May JC, Mclean JA. Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim Biophys Acta. 2011;1811(11):935–945.
  • Groessl M, Graf S, Taylor A, et al. Separation of isomeric lipids by ion mobility-time of flight mass spectrometry. Thun: Tofwerk AG; 2015. p. 1–4.
  • Jackson SN, Ugarov M, Post JD, et al. A Study of phospholipids by Ion Mobility TOFMS. J Am Soc Mass Spectrom. 2008;19(11):1655–1662.
  • Orešič M. Bioinformatics and computational approaches applicable to lipidomics. Eur J Lipid Sci Technol. 2009;111(1):99–106.
  • Checa A, Bedia C, Jaumot J. Lipidomic data analysis: tutorial, practical guidelines and applications. Anal Chim Acta. 2015;885:1–16.
  • Dalmau N, Bedia C, Tauler R. Validation of the Regions of Interest Multivariate Curve Resolution (ROIMCR) procedure for untargeted LC-MS lipidomic analysis. Anal Chim Acta. 2018;1025:80–91.
  • Hartler J, Tharakan R, Köfeler HC, et al. Bioinformatics tools and challenges in structural analysis of lipidomics MS/MS data. Brief Bioinform. 2013;14(3):375–390.
  • Wang M, Wang C, Han RH, et al. Novel advances in shotgun lipidomics for biology and medicine. Prog Lipid Res. 2016;61:83–108.
  • Kind T, Liu KH, Lee DY, et al. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods. 2013;10(8):755–758.
  • Koelmel JP, Kroeger NM, Ulmer CZ, et al. LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics. 2017;18(1):331.
  • Ni Z, Angelidou G, Hoffmann R, et al. LPPtiger software for lipidome-specific prediction and identification of oxidized phospholipids from LC-MS datasets. Sci Rep. 2017;7(1):15138.
  • Kochen MA, Chambers MC, Holman JD, et al. Greazy: open-source software for automated phospholipid tandem mass spectrometry identification. Anal Chem. 2016;88(11):5733–5741.
  • Ejsing CS, Duchoslav E, Sampaio J, et al. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal Chem. 2006;78(17):6202–6214.
  • Herzog R, Schuhmann K, Schwudke D, et al. LipidXplorer: a software for consensual cross-platform lipidomics. PLOS One. 2012;7(1):e29851.
  • Gode D, Volmer DA. Lipid imaging by mass spectrometry – a review. Analyst. 2013;138(5):1289–1315.
  • Bednařík A, Machálková M, Moskovets E, et al. MALDI MS imaging at acquisition rates exceeding 100 pixels per second. J Am Soc Mass Spectrom. 2019;30(2):289–298.
  • Shimizu Y, Satou M, Hayashi K, et al. Matrix-assisted laser desorption/ionization imaging mass spectrometry reveals changes of phospholipid distribution in induced pluripotent stem cell colony differentiation. Anal Bioanal Chem. 2017;409(4):1007–1016.
  • Hong JH, Kang JW, Kim DK, et al. Global changes of phospholipids identified by MALDI imaging mass spectrometry in a mouse model of Alzheimer’s disease. J Lipid Res. 2016;57(1):36–45.
  • Eberlin LS, Tibshirani RJ, Zhang J, et al. Molecular assessment of surgical-resection margins of gastric cancer by mass-spectrometric imaging. Proc Natl Acad Sci U S A. 2014;111(7):2436–2441.
  • Shimma S, Sugiura Y, Hayasaka T, et al. MALDI-based imaging mass spectrometry revealed abnormal distribution of phospholipids in colon cancer liver metastasis. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;855(1):98–103.
  • Eberlin LS, Norton I, Dill AL, et al. Classifying human brain tumors by lipid imaging with mass spectrometry. Cancer Res. 2012;72(3):645–654.
  • Mao X, He J, Li T, et al. Application of imaging mass spectrometry for the molecular diagnosis of human breast tumors. Sci Rep. 2016;6:21043.
  • Stutts WL, Menger RF, Kiss A, et al. Characterization of phosphatidylcholine oxidation products by MALDI MS(n). Anal Chem. 2013;85(23):11410–11419.
  • Patterson NH, Thomas A, Chaurand P. Monitoring time-dependent degradation of phospholipids in sectioned tissues by MALDI imaging mass spectrometry. J Mass Spectrom. 2014;49(7):622–627.
  • Maulucci G, Cohen O, Daniel B, et al. Fatty acid-related modulations of membrane fluidity in cells: detection and implications. Free Radic Res. 2016;50(sup1):S40–S50.
  • Cohen G, Riahi Y, Shamni O, et al. Role of lipid peroxidation and PPAR-δ in amplifying glucose-stimulated insulin secretion. Diabetes. 2011;60(11):2830–2842.
  • Cohen G, Shamni O, Avrahami Y, et al. Beta cell response to nutrient overload involves phospholipid remodelling and lipid peroxidation. Diabetologia. 2015;58(6):1333–1343.
  • Maulucci G, Di Giacinto F, De Angelis C, et al. Real time quantitative analysis of lipid storage and lipolysis pathways by confocal spectral imaging of intracellular micropolarity. BBA Mol Cell Biol Lipids. 2018;1863(7):783–793.
  • Drummen GPC, van Liebergen LCM, Op den Kamp JAF, et al. C11-BODIPY(581/591), an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radic Biol Med. 2002;33(4):473–490.
  • Gibbons E, Nelson J, Anderson L, et al. Role of membrane oxidation in controlling the activity of human group IIa secretory phospholipase A(2) toward apoptotic lymphoma cells. Biochim Biophys Acta. 2013;1828(2):670–676.
  • Yamanaka K, Saito Y, Sakiyama J, et al. A novel fluorescent probe with high sensitivity and selective detection of lipid hydroperoxides in cells. RSC Adv. 2012;2(20):7894–7900.
  • Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13(1):81–90.