216
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Kinetics and localisation of haemin-induced lipoprotein oxidation

, , , , &
Pages 968-978 | Received 07 Jun 2019, Accepted 14 Aug 2019, Published online: 20 Sep 2019

References

  • Stocker R, Keaney JF. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84(4):1381–1478.
  • Houben T, Brandsma E, Walenbergh SMA. Oxidized LDL at the crossroads of immunity in non-alcoholic steatohepatitis. Biochim Biophys Acta. 2017;1862(4):416–429.
  • Spahis S, Delvin E, Borys JM, et al. Oxidative stress as a critical factor in nonalcoholic fatty liver disease pathogenesis. Antioxid Redox Signal. 2017;26(10):519–541.
  • Niki E, Yoshida Y, Saito Y, et al. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun. 2005;338(1):668–676.
  • Niki E. Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med. 2009;47(5):469–484.
  • Esposito BP, Breuer W, Sirankapracha P, et al. Labile plasma iron in iron overload:redox activity and susceptibility to chelation. Blood. 2003;102(7):2670–2677.
  • Breuer W, Ghoti H, Shattat A, et al. Non-transferrin bound iron in thalassemia: differential detection of redox active forms in children and older patients. Am J Hematol. 2012;87(1):55–61.
  • Phumala N, Porasuphatana S, Unchern S, et al. Hemin: a possible cause of oxidative stress in blood circulation of β-thalassemia/hemoglobin E disease. Free Radic Res. 2003;37(2):129–135.
  • Luechapudiporn R, Morales NP, Fucharoen S, et al. The reduction of cholesteryl linoleate in lipoproteins: an index of clinical severity in beta-thalassemia/Hb E. Clin Chem Lab Med. 2006;44(5):574–581.
  • Morales NP, Charlermchoung C, Luechapudiporn R, et al. Lipid fluidity at different regions in LDL and HDL of β-thalassemia/Hb E patients. Biochem Biophys Res Commun. 2006;350(3):698–703.
  • Phumala Morales N, Cherlermchoung C, Fucharoen S, et al. Paraoxonase and platelet-activating factor acetylhydrolase activities in lipoproteins of beta-thalassemia/hemoglobin E patients. Clin Chem Lab Med. 2007;45(7):884–889.
  • Ragab SM, Safan MA, Obeid OM, et al. Lipoprotein-associated phospholipase A2 (Lp-PLA2) and tumor necrosis factor-alpha (TNF-α) and their relation to premature atherosclerosis in β-thalassemia children. Hematology. 2015;20(4):228–238.
  • Sleiman J, Tarhini A, Bou-Fakhredin R, et al. Non-transfusion-dependent thalassemia: an update on complications and management. Int J Mol Sci. 2018;19(1):182.
  • Teawtrakul N, Jetsrisuparb A, Pongudom S, et al. Epidemiologic study of major complications in adolescent and adult patients with thalassemia in Northeastern Thailand: the E-SAAN study phase I. Hematology. 2018;23(1):55–60.
  • Balla G, Jacob HS, Eaton JW, et al. Hemin: a possible physiological mediator of low density lipoprotein oxidation and endothelial injury. Arterioscler Thromb. 1991;11(6):1700–1711.
  • Camejo G, Halberg C, Manschik-Lundin A, et al. Hemin binding and oxidation of lipoproteins in serum: mechanisms and effect on the interaction of LDL with human macrophages. J Lipid Res. 1998;39(4):775–776.
  • Havel RJ, Eder HA, Bragdon JH. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955;34(9):1345–1353.
  • Shaklai N, Shviro Y, Rabizadeh E, et al. Accumulation and drainage of hemin in the red cell membrane. Biochim Biophys Acta. 1985;821(2):355–366.
  • Asakawa T, Matsushita S. Coloring conditions of thiobarbituric acid test for detecting lipid hydroperoxides. Lipids. 1980;15(3):137–140.
  • Zaspel BJ, Csallany AS. Determination of alpha-tocopherol in tissues and plasma by high-performance liquid chromatography. Anal Biochem. 1983;130(1):146–150.
  • Seta K, Nakamura H, Okuyama T. Determination of α-tocopherol, free cholesterol, esterified cholesterols and triacylglycerols in human lipoproteins by high-performance liquid chromatography. J Chromatogr. 1990;515:585–595.
  • Aarsman AJ, Neys FW, Bosch H. Catabolism of platelet-activating factor and its acyl analog. Differentiation of the activities of lysophospholipase and platelet-activating-factor acetylhydrolase. Eur J Biochem. 1991;200(1):187–193.
  • Gan KN, Smolen A, Eckerson HW, et al. Purification of human serum paraoxonase/arylesterase. Evidence for one esterase catalyzing both activities. Drug Metab Dispos. 1991;19(1):100–106.
  • Ben-Yashar V, Barenholz Y. Characterization of the core and surface of human plasma lipoproteins. A study based on the use of five fluorophores. Chem Phys Lipids. 1991;60(1):1–14.
  • Singh RJ, Feix JB, Mchaourab HS, et al. Spin-labelling study of the oxidative damage to low-density lipoprotein. Biochem Biophys. 1995;320:1345–1353.
  • Schreier S, Polnaszek CF, Smith IC. Spin labels in membranes. Problems in practice. Biochim Biophys Acta. 1978;515(4):395–436.
  • Kulig W, Cwiklik L, Jurkiewicz P, et al. Cholesterol oxidation products and their biological importance. Chem Phys Lipids. 2016;199:144–160.
  • Choi SH, Sviridov D, Miller YI. Oxidized cholesteryl esters and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(4):393–397.
  • Eckl PM, Bresgen N. Genotoxicity of lipid oxidation compounds. Free Radic Biol Med. 2017;111:244–252.
  • Tucker JM, Townsend DM. Alpha-tocopherol: roles in prevention and therapy of human disease. Biomed Pharmacother. 2005;59(7):380–387.
  • Brites F, Martin M, Guillas I, et al. Antioxidative activity of high-density lipoprotein (HDL): mechanistic insights into potential clinical benefit. BBA Clin. 2017;8:66–77.
  • Aviram M, Rosenblat M. Paraoxonases 1, 2, And 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free Radic Biol Med. 2004;37(9):1304–1316.
  • Levy D, Reichert CO, Bydlowski SP. Paraoxonases activities and polymorphisms in elderly and old-age diseases: an overview. Antioxidants (Basel). 2019;8(5). DOI:10.3390/antiox8050118
  • Aviram M, Rosenblat M, Billecke S, et al. Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants. Free Radic Biol Med. 1999;26(7–8):892–904.
  • Jaouad L, Milochevitch C, Khalil A. PON1 paraoxonase activity is reduced during HDL oxidation and is an indicator of HDL antioxidant capacity. Free Radic Res. 2003;37(1):77–83.
  • Esterbauer H, Striegl G, Puhl H, et al. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic Res Commun. 1989;6(1):67–75.
  • Ishida Y, Okamoto Y, Matsuoka Y, et al. Detection and inhibition of lipid-derived radicals in low-density lipoprotein. Free Radic Biol Med. 2017;113:487–493.
  • Jeney V, Komódi E, Nagy E, et al. Suppression of hemin-mediated oxidation of low-density lipoprotein and subsequent endothelial reactions by hydrogen sulfide (H(2)S). Free Radic Biol Med. 2009;46(5):616–623.
  • Bruch RC, Thayer WS. Differential effect of lipid peroxidation on membrane fluidity as determined by electron spin resonance probes. Biochim Biophys Acta. 1983;733(2):216–222.
  • Miller YI, Smith A, Morgan WT, et al. Role of hemopexin in protection of low-density lipoprotein against hemoglobin-induced oxidation. Biochemistry. 1996;35(40):13112–13117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.