455
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

ROS and pentose phosphate pathway: mathematical modelling of the metabolic regulation in response to xenobiotic-induced oxidative stress and the proposed Impact of the gluconate shunt

, , , &
Pages 979-992 | Received 16 Jan 2019, Accepted 15 Aug 2019, Published online: 18 Sep 2019

References

  • Maddocks OD, Labuschagne CF, Vousden KH. Localization of NADPH production: a wheel within a wheel. Mol Cell. 2014;55(2):158–160.
  • Rolfsson Ó, Paglia G, Magnusdóttir M, et al. Inferring the metabolism of human orphan metabolites from their metabolic network context affirms human gluconokinase activity. Biochem J. 2013;449(2):427–435.
  • Rohatgi N, Nielsen TK, Bjørn SP, et al. Biochemical characterization of human gluconokinase and the proposed metabolic impact of gluconic acid as determined by constraint based metabolic network analysis. PLOS ONE. 2014;9(6):e98760.
  • Rohatgi N, Guðmundsson S, Rolfsson Ó. Kinetic analysis of gluconate phosphorylation by human gluconokinase using isothermal titration calorimetry. FEBS Lett. 2015;589(23):3548–3555.
  • Chen X, Schreiber K, Appel J, et al. The Entner–Doudoroff pathway is an overlooked glycolytic route in cyanobacteria and plants. Proc Natl Acad Sci USA. 2016;113(19):5441–5446.
  • Corkins ME, Wilson S, Cocuron JC, et al. The gluconate shunt is an alternative route for directing glucose into the pentose phosphate pathway in fission yeast. J Biol Chem. 2017;292(33):13823–13832.
  • Pink M, Verma N, Zerries A, et al. Dose-dependent response to 3-nitrobenzanthrone exposure in human urothelial cancer cells. Chem Res Toxicol. 2017;30(10):1855–1864.
  • Cheung EC, Vousden KH. The role of p53 in glucose metabolism. Curr Opin Cell Biol. 2010;22(2):186–191.
  • Bensaad K, Vousden KH. p53: new roles in metabolism. Trends Cell Biol. 2007;17(6):286–291.
  • Vousden KH. Outcomes of p53 activation – spoilt for choice. J Cell Sci. 2006;119(24):5015–5020.
  • Bensaad K, Tsuruta A, Selak MA, et al. Tigar, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;126(1):107–120.
  • Lyakhov IG, Krishnamachari A, Schneider TD. Discovery of novel tumor suppressor p53 response elements using information theory. Nucleic Acids Res. 2008;36(11):3828–3833.
  • Mathupala SP, Heese C, Pedersen PL. Glucose catabolism in cancer cells: the type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem. 1997;272(36):22776–22780.
  • Tan M, Li S, Swaroop M, et al. Transcriptional activation of the human glutathione peroxidase promoter by p53. J Biol Chem. 1999;274(17):12061–12066.
  • Sabate L, Franco R, Canela EI, et al. A model of the pentose phosphate pathway in rat liver cells. Mol Cell Biochem. 1995;142(1):9–17.
  • Reed MC, Thomas RL, Pavisic J, et al. A mathematical model of glutathione metabolism. Theor Biol Med Modell. 2008;5(1):8.
  • Ng CF, Schafer FQ, Buettner GR, et al. The rate of cellular hydrogen peroxide removal shows dependency on GSH: mathematical insight into in vivo H2O2 and GPx concentrations. Free Radic Res. 2007;41(11):1201–1211.
  • Adimora NJ, Jones DP, Kemp ML. A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxid Redox Signal. 2010;13(6):731–743.
  • Kembro JM, Aon MA, Winslow RL, et al. Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model. Biophys J. 2013;104(2):332–343.
  • Gauthier LD, Greenstein JL, O’Rourke B, et al. An integrated mitochondrial ros production and scavenging model: implications for heart failure. Biophys J. 2013;105(12):2832–2842.
  • Pereira EJ, Smolko CM, Janes KA. Computational models of reactive oxygen species as metabolic byproducts and signal-transduction modulators. Front Pharmacol. 2016;7:457.
  • Zhang Q, Bhattacharya S, Conolly RB, et al. Molecular signaling network motifs provide a mechanistic basis for cellular threshold responses. Environ Health Perspect. 2014;122(12):1261–1270.
  • Zhang Q, Pi J, Woods CG, et al. Hormesis and adaptive cellular control systems. Dose-Response. 2008;6(2):196–208.
  • Zhang Q, Bhattacharya S, Pi J, et al. Adaptive posttranslational control in cellular stress response pathways and its relationship to toxicity testing and safety assessment. Toxicol Sci. 2015;147(2):302–316.
  • MathWorks Solve stiff differential equations and DAEs – variable order ode15s – MATLAB ode15s [website]; [cited 2018 Sep 7]. Available from: https://.mathworks.com/help/matlab/ref/ode15s.html.
  • Ozawa K. Purification and kinetic properties of phosphofructokinase from dental pulps of rat incisors. Arch Oral Biol. 1985;30(7):577–582.
  • Bauer HP, Srihari T, Jochims JC, et al. 6-Phosphogluconolactonase. Purification, properties and activities in various tissues. Eur J Biochem. 1983;133(1):163–168.
  • Roberts BD, Bailey GD, Buess CM, et al. Purification and characterization of hepatic porcine gluconolactonase. Biochem Biophys Res Commun. 1978;84(2):322–327.
  • Carper WR, Toews ML, Thompson RE, et al. A kinetic study of pig liver glucose dehydrogenase. Arch Biochem Biophys. 1976;175(1):312–320.
  • Özer N, Aksoy Y, Ögüs IH. Kinetic properties of human placental glucose-6-phosphate dehydrogenase. Int J Biochem Cell Biol. 2001;33(3):221–226.
  • Kahana SE, Lowry OH, Schulz DW, et al. The kinetics of phosphoglucoisomerase. J Biol Chem. 1960;235(8):2178–2184.
  • Worthington DJ, Rosemeyer MA. Glutathione reductase from human erythrocytes. Catalytic properties and aggregation. Eur J Biochem abs. 1976;67(1):231–238.
  • Wong KK, Vanoni MA, Blanchard JS. Glutathione reductase: solvent equilibrium and kinetic isotope effects. Biochemistry. 1988;27(18):7091–7096.
  • Chiu DT, Stults FH, Tappel AL. Purification and properties of rat lung soluble glutathione peroxidase. Biochim Biophys Acta. 1976;445(3):558–566.
  • Rijksen G, Staal GE. Regulation of human erythrocyte hexokinase. The influence of glycolytic intermediates and inorganic phosphate. Biochim Biophys Acta. 1977;485(1):75–86.
  • Monasterio O, Cárdenas ML. Kinetic studies of rat liver hexokinase D (‘glucokinase’) in non-co-operative conditions show an ordered mechanism with MgADP as the last product to be released. Biochem J. 2003;371(1):29–38.
  • Dyson JE, D’Orazio RE. Sheep liver 6-phosphogluconate dehydrogenase. Inhibition by nucleoside phosphates and by other metabolic intermediates. J Biol Chem. 1973;248(15):5428–5435.
  • Corpas FJ, García-Salguero L, Barroso JB, et al. Kinetic properties of hexose-monophosphate dehydrogenases. II. Isolation and partial purification of 6-phosphogluconate dehydrogenase from rat liver and kidney cortex. Mol Cell Biochem. 1995;144(2):97–104.
  • Toews ML, Kanji MI, Carper WR. 6-Phosphogluconate dehydrogenase. Purification and kinetics. J Biol Chem. 1976;251(22):7127–7131.
  • Segel IH. Enzyme kinetics. Behavior and analysis of rapid equilibrium and steady-state enzyme systems. New York: John Wiley & Sons; 1975.
  • Hansen T, Seidel A, Borlak J. The environmental carcinogen 3-nitrobenzanthrone and its main metabolite 3-aminobenzanthrone enhance formation of reactive oxygen intermediates in human A549 lung epithelial cells. Toxicol Appl Pharmacol. 2007;221(2):222–234.
  • Heredia VV, Thomson J, Nettleton D, et al. Glucose-induced conformational changes in glucokinase mediate allosteric regulation: transient kinetic analysis. Biochemistry. 2006;45(24):7553–7562.
  • Liu F, Dong Q, Myers AM, et al. Expression of human brain hexokinase in Escherichia coli: purification and characterization of the expressed enzyme. Biochem Biophys Res Commun. 1991;177(1):305–311.
  • Lin HY, Kao YH, Chen ST, et al. Effects of inherited mutations on catalytic activity and structural stability of human glucose-6-phosphate isomerase expressed in Escherichia coli. Biochim Biophys Acta. 2009;1794(2):315–323.
  • Kanji MI, Toews ML, Carper WR. A kinetic study of glucose-6-phosphate dehydrogenase. J Biol Chem. 1976;251(8):2258–2262.
  • Medina-Puerta MM, Gallego-Iniesta M, Garrido-Pertierra A. Purification of 6-phosphogluconolactonase from bass (Dicentrarchus labrax l.) liver. Biochem Int. 1988;17(6):1011–1019.
  • Schofield PJ, Sols A. Rat liver 6-phosphogluconolactonase: a low Km enzyme. Biochem Biophys Res Commun. 1976;71(4):1313–1318.
  • Tranulis MA, Christophersen B, Borrebaek B. Glucose dehydrogenase in beef (Bos taurus) and rainbow trout (Oncorhynchus mykiss) liver: a comparative study. Comp Biochem Physiol B Biochem Mol Biol. 1994;109(2):427–435.
  • Campbell DP, Carper WR, Thompson RE. Bovine liver glucose dehydrogenase: isolation and characterization. Arch Biochem Biophys. 1982;215(1):289–301.
  • Ishikawa T, Nishikawa H, Gao Y, et al. The pathway via D-galacturonate/L-galactonate is significant for ascorbate biosynthesis in euglena gracilis: identification and functional characterization of aldonolactonase. J Biol Chem. 2008;283(45):31133–31141.
  • Pasti C, Rinaldi E, Cervellati C, et al. Sugar derivatives as new 6-phosphogluconate dehydrogenase inhibitors selective for the parasite Trypanosoma brucei. Bioorg Med Chem. 2003;11(7):1207–1214.
  • Carmagnol F, Sinet PM, Jerome H. Selenium-dependent and non-selenium-dependent glutathione peroxidases in human tissue extracts. Biochim Biophys Acta. 1983;759(1–2):49–57.
  • Zheng RL, Kemp RG. The mechanism of ATP inhibition of wild type and mutant phosphofructo-1-kinase from Escherichia coli. J Biol Chem. 1992;267(33):23640–23645.
  • Durante P, Raleigh X, Gómez ME, et al. Isozyme analysis of human normal polymorphonuclear leukocyte phosphofructokinase. Biochem Biophys Res Commun. 1995;216(3):898–905.
  • Gilloteaux J, Jamison JM, Neal DR, et al. Cell damage and death by autoschizis in human bladder (RT4) carcinoma cells resulting from treatment with ascorbate and menadione. Ultrastruct Pathol. 2010;34(3):140–160.
  • Heiske M, Letellier T, Klipp E. Comprehensive mathematical model of oxidative phosphorylation valid for physiological and pathological conditions. FEBS J. 2017;284(17):2802–2828.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.