444
Views
5
CrossRef citations to date
0
Altmetric
Reviews

The role of endogenous bromotyrosine in health and disease

, , & ORCID Icon
Pages 1019-1034 | Received 12 Jul 2019, Accepted 10 Sep 2019, Published online: 26 Sep 2019

References

  • Weiss SJ, Test ST, Eckmann CM, et al. Brominating oxidants generated by human eosinophils. Science. 1986;234(4773):200–203.
  • Thomas EL, Bozeman PM, Jefferson MM, et al. Oxidation of bromide by the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase. Formation of bromamines. J Biol Chem. 1995;270(7):2906–2913.
  • Wu W, Chen Y, d’Avignon A, et al. 3-Bromotyrosine and 3,5-dibromotyrosine are major products of protein oxidation by eosinophil peroxidase: potential markers for eosinophil-dependent tissue injury in vivo. Biochemistry. 1999;38(12):3538–3548.
  • Vaiseman N, Koren G, Pencharz P. Pharmacokinetics of oral and intravenous bromide in normal volunteers. J Toxicol Clin Toxicol. 1986;24(5):403–413.
  • Cousins C, Skehan SJ, Rolph SM, et al. Comparative microvascular exchange kinetics of [77Br] bromide and 99mTc-DTPA in humans. Eur J Nucl Med Mol Imaging. 2002;29(5):655–662.
  • Fielding CL, Magdesian KG, Elliott DA, et al. Pharmacokinetics and clinical utility of sodium bromide (NaBr) as an estimator of extracellular fluid volume in horses. J Vet Intern Med. 2003;17(2):213–217.
  • Quast TA, Combs MD, Edwards SH. Pharmacokinetics of bromide in adult sheep following oral and intravenous administration. Aust Vet J. 2015;93(1–2):20–25.
  • Trepanier LA, Babish JG. Pharmacokinetic properties of bromide in dogs after the intravenous and oral administration of single doses. Res Vet Sci. 1995;58(3):248–251.
  • McCall AS, Cummings CF, Bhave G, et al. Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell. 2014;157(6):1380–1392.
  • Eadie MJ. Sir Charles Locock and potassium bromide. J R Coll Phys Edinb. 2012;42(3):274–279.
  • Suzuki S, Kawakami K, Nakamura F, et al. Bromide, in the therapeutic concentration, enhances GABA-activated currents in cultured neurons of rat cerebral cortex. Epilepsy Res. 1994;19(2):89–97.
  • Korinthenberg R, Burkart P, Woelfle C, et al. Pharmacology, efficacy, and tolerability of potassium bromide in childhood epilepsy. J Child Neurol. 2007;22(4):414–418.
  • James LP, Farrar HC, Griebel ML, et al. Bromism: intoxication from a rare anticonvulsant therapy. Pediatr Emerg Care. 1997;13(4):268–270.
  • Miura Y, Nakai K, Suwabe A, et al. Trace elements in renal disease and hemodialysis. Nucl Instrum Methods Phys Res B. 2002;189(1–4):443–449.
  • Wu W, Samoszuk MK, Comhair SAA, et al. Eosinophils generate brominating oxidants in allergen-induced asthma. J Clin Invest. 2000;105(10):1455–1463.
  • Zederbauer M, Furtmüller PG, Brogioni S, et al. Heme to protein linkages in mammalian peroxidases: impact on spectroscopic, redox and catalytic properties. Nat Prod Rep. 2007;24(3):571–584.
  • Zederbauer M, Furtmüller PG, Ganster B, et al. The vinyl-sulfonium bond in human myeloperoxidase: impact on compound I formation and reduction by halides and thiocyanate. Biochem Biophys Res Commun. 2007;356(2):450–456.
  • Pattison DI, Davies MJ. Kinetic analysis of the reactions of hypobromous acid with protein components: implications for cellular damage and use of 3-bromotyrosine as a marker of oxidative stress. Biochemistry. 2004;43(16):4799–4809.
  • Henderson JP, Byun J, Williams MV, et al. Production of brominating intermediates by myeloperoxidase. A transhalogenation pathway for generating mutagenic nucleobases during inflammation. J Biol Chem. 2001;276(11):7867–7875.
  • Gaut JP, Yeh GC, Tran HD, et al. Neutrophils employ the myeloperoxidase system to generate antimicrobial brominating and chlorinating oxidants during sepsis. Proc Natl Acad Sci USA. 2001;98(21):11961–11966.
  • Nogueira NM, Klebanoff SJ, Cohn ZA, et al. T. cruzi: sensitization to macrophage killing by eosinophil peroxidase. J Immunol. 1982;128(4):1705–1708.
  • Slungaard A, Mahoney JR. Bromide-dependent toxicity of eosinophil peroxidase for endothelium and isolated working rat hearts: a model for eosinophilic endocarditis. J Exp Med. 1991;173(1):117–126.
  • Senthilmohan R, Kettle AJ. Bromination and chlorination reactions of myeloperoxidase at physiological concentrations of bromide and chloride. Arch Biochem Biophys. 2006;445(2):235–244.
  • Citardi MJ, Song W, Batra PS, et al. Characterization of oxidative pathways in chronic rhinosinusitis and sinonasal polyposis. Am J Rhinol. 2006;20(3):353–359.
  • Cunnion KM, Willis LK, Minto HB, et al. Eosinophil quantitated urine kinetic: a novel assay for assessment of eosinophilic esophagitis. Ann Allergy Asthma Immunol. 2016;116(5):435–439.
  • Higashi N, Mita H, Taniguchi M, et al. Urinary eicosanoid and tyrosine derivative concentrations in patients with vasculitides. J Allergy Clin Immunol. 2004;114(6):1353–1358.
  • Mita H, Higashi N, Taniguchi M, et al. Urinary 3-bromotyrosine and 3-chlorotyrosine concentrations in asthmatic patients: lack of increase in 3-bromotyrosine concentration in urine and plasma proteins in aspirin-induced asthma after intravenous aspirin challenge. Clin Exp Allergy. 2004;34(6):931–938.
  • Mani AR, Moreno JC, Visser TJ, et al. The metabolism and de-bromination of bromotyrosine in vivo. Free Radic Biol Med. 2016;90:243–251.
  • Mani AR, Ippolito S, Moreno JC, et al. The metabolism and dechlorination of chlorotyrosine in vivo. J Biol Chem. 2007;282(40):29114–29121.
  • Mani AR, Pannala AS, Orie NN, et al. Nitration of endogenous para-hydroxyphenylacetic acid and the metabolism of nitrotyrosine. Biochem J. 2003;374(2):521–527.
  • Mani AR, Moore KP. Dynamic assessment of nitration reactions in vivo. Methods Enzymol. 2005;396:151–159.
  • Firnau G, Fritze K. Evidence for the existence of 3-bromo-L-tyrosine in serum proteins. Bioinorg Chem. 1973;2(2):167–170.
  • Hirao I, Ohtsuki T, Fujiwara T, et al. An unnatural base pair for incorporating amino acid analogs into proteins. Nat Biotechnol. 2002;20(2):177–182.
  • Demidkina TV, Antson AA, Faleev NG, et al. Spatial structure and the mechanism of tyrosine phenol-lyase and tryptophan indole-lyase. Mol Biol. 2009;43(2):269–283.
  • Moreno JC, Klootwijk W, van Toor H, et al. Mutations in the iodotyrosine deiodinase gene and hypothyroidism. N Engl J Med. 2008;358(17):1811–1818.
  • Rokni Lamooki GR, Shirazi AH, Mani AR. Dynamical model for thyroid. Commun Nonlinear Sci Numer Simul. 2015;22(1–2):297–313.
  • Cignini P, Cafà EV, Giorlandino C, et al. Thyroid physiology and common diseases in pregnancy: review of literature. J Prenat Med. 2012;6(4):64–71.
  • Kagiyama T, Glushakov AV, Sumners C, et al. Neuroprotective action of halogenated derivatives of L-phenylalanine. Stroke. 2004;35(5):1192–1196.
  • Morner C. Dibromotyrosine in marine sponge. Z Physiol Chem. 1913;88:138.
  • Peng J, Li J, Hamann MT. The marine bromotyrosine derivatives. Alkaloids Chem Biol. 2005;61:59–262.
  • Mierzwa R, King A, Conover MA, et al. Verongamine, a novel bromotyrosine-derived histamine H3-antagonist from the marine sponge Verongula gigantea. J Nat Prod. 1994;57(1):175–177.
  • Mack MM, Molinski TF, Buck ED, et al. Novel modulators of skeletal muscle FKBP12/calcium channel complex from Ianthella basta. Role of FKBP12 in channel gating. J Biol Chem. 1994;269(37):23236–23249.
  • Chen L, Molinski TF, Pessah IN. Bastadin 10 stabilizes the open conformation of the ryanodine-sensitive Ca2+ channel in an FKBP12-dependent manner. J Biol Chem. 1999;274(46):32603–32612.
  • Nicholas GM, Eckman LL, Newton GL, et al. Inhibition and kinetics of Mycobacterium tuberculosis and Mycobacterium smegmatis mycothiol-S-conjugate amidase by natural product inhibitors. Bioorg Med Chem. 2003;11(4):601–608.
  • Piña IC, Gautschi JT, Wang GY, et al. Psammaplins from the sponge Pseudoceratina purpurea: inhibition of both histone deacetylase and DNA methyltransferase. J Org Chem. 2003;68(10):3866–3873.
  • McCulloch MWB, Coombs GS, Banerjee N, et al. Psammaplin A as a general activator of cell-based signaling assays via HDAC inhibition and studies on some bromotyrosine derivatives. Bioorg Med Chem. 2009;17(6):2189–2198.
  • Su JH, Chen YC, El-Shazly M, et al. Towards the small and the beautiful: a small dibromotyrosine derivative from Pseudoceratina sp. sponge exhibits potent apoptotic effect through targeting IKK/NFκB signaling pathway. Mar Drugs. 2013;11(9):3168–3185.
  • Carr G, Berrue F, Klaiklay S, et al. Natural products with protein tyrosine phosphatase inhibitory activity. Methods. 2014;65(2):229–238.
  • Sirimangkalakitti N, Olatunji OJ, Changwichit K, et al. Bromotyrosine alkaloids with acetylcholinesterase inhibitory activity from the Thai sponge Acanthodendrilla sp. Nat Prod Commun. 2015;10(11):1945–1949.
  • Niemann H, Marmann A, Lin W, et al. Sponge derived bromotyrosines: structural diversity through natural combinatorial chemistry. Nat Prod Commun. 2015;10(1):219–231.
  • Aldridge RE, Chan T, van Dalen CJ, et al. Eosinophil peroxidase produces hypobromous acid in the airways of stable asthmatics. Free Radic Biol Med. 2002;33(6):847–856.
  • Wedes SH, Wu W, Comhair SAA, et al. Urinary bromotyrosine measures asthma control and predicts asthma exacerbations in children. J Pediatr. 2011;159(2):248–255.e1.
  • Cowan DC, Taylor DR, Peterson LE, et al. Biomarker-based asthma phenotypes of corticosteroid response. J Allergy Clin Immunol. 2015;135(4):877–883.e1.
  • Saude EJ, Lacy P, Musat-Marcu S, et al. NMR analysis of neutrophil activation in sputum samples from patients with cystic fibrosis. Magn Reson Med. 2004;52(4):807–814.
  • Thomson E, Brennan S, Senthilmohan R, et al. Identifying peroxidases and their oxidants in the early pathology of cystic fibrosis. Free Radic Biol Med. 2010;49(9):1354–1360.
  • Xu Y, Szép S, Lu Z. The antioxidant role of thiocyanate in the pathogenesis of cystic fibrosis and other inflammation-related diseases. Proc Natl Acad Sci USA. 2009;106(48):20515–20519.
  • Sattasathuchana P, Grützner N, Lopes R, et al. Stability of 3-bromotyrosine in serum and serum 3-bromotyrosine concentrations in dogs with gastrointestinal diseases. BMC Vet Res. 2015;11(1):5.
  • Sattasathuchana P, Allenspach K, Lopes R, et al. Evaluation of Serum 3-bromotyrosine concentrations in dogs with steroid-responsive diarrhea and food-responsive diarrhea. J Vet Intern Med. 2017;31(4):1056–1061.
  • Kato Y, Dozaki N, Nakamura T, et al. Quantification of modified tyrosines in healthy and diabetic human urine using liquid chromatography/tandem mass spectrometry. J Clin Biochem Nutr. 2009;44(1):67–78.
  • Asahi T, Kondo H, Masuda M, et al. Chemical and immunochemical detection of 8-halogenated deoxyguanosines at early stage inflammation. J Biol Chem. 2010;285(12):9282–9291.
  • Provencio JJ, Fu X, Siu A, et al. CSF neutrophils are implicated in the development of vasospasm in subarachnoid hemorrhage. Neurocrit Care. 2010;12(2):244–251.
  • Eiserich JP, Baldus S, Brennan ML, et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science. 2002;296(5577):2391–2394.
  • Sattasathuchana P, Berghoff N, Grützner N, et al. Development and analytic validation of an electron ionization gas chromatography/mass spectrometry (EI-GC/MS) method for the measurement of 3-bromotyrosine in canine serum. Vet Clin Pathol. 2016;45(3):515–523.
  • Tilley M, Bean SR, Tilley KA. Capillary electrophoresis for monitoring dityrosine and 3-bromotyrosine synthesis. J Chromatogr A. 2006;1103(2):368–371.
  • Kambayashi Y, Ogino K, Takemoto K, et al. Preparation and characterization of a polyclonal antibody against brominated protein. J Clin Biochem Nutr. 2009;44(1):95–103.
  • Tilley M, Benjamin RE, Srivarin P, et al. Nonenzymatic preparative-scale synthesis of dityrosine and 3-bromotyrosine. Anal Biochem. 2004;334(1):193–195.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.