136
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and spin trapping properties of polystyrene supported trifluoromethylated cyclic nitrones

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1084-1100 | Received 20 Jun 2019, Accepted 10 Oct 2019, Published online: 18 Nov 2019

References

  • Fuzzi S, Baltensperger U, Carslaw K, et al. Particulate matter, air quality and climate: lessons learned and future needs. Atmos Chem Phys. 2015;15(14):8217–8299.
  • Tang X, Price D, Praske E, et al. NO3 radical, OH radical and O3-initiated secondary aerosol formation from aliphatic amines. Atmos Environ. 2013;72:105–112.
  • Carlton AG, Wiedinmyer C, Kroll JH. A review of secondary organic aerosol (SOA) formation from isoprene. Atmos Chem Phys. 2009;9(14):4987–5005.
  • Iinuma Y, Böge O, Miao Y, et al. Laboratory studies on secondary organic aerosol formation from terpenes. Faraday Discuss. 2005;130:279–294, discussion 363.
  • Donahue NM, Robinson AL, Pandis SN. Atmospheric organic particulate matter: from smoke to secondary organic aerosol. Atmos Environ. 2009;43(1):94–106.
  • Ervens B, Turpin BJ, Weber RJ. Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos Chem Phys. 2011;11(21):11069–11102.
  • Slade JH, Thalman R, Wang J, et al. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity. Atmos Chem Phys. 2015;15(17):10183–10201.
  • Hung HM, Lu WJ, Chen WN, et al. Enhancement of the hygroscopicity parameter kappa of rural aerosols in northern Taiwan by anthropogenic emissions. Atmos Environ. 2014;84:78–87.
  • Moise T, Flores JM, Rudich Y. Optical properties of secondary organic aerosols and their changes by chemical processes. Chem Rev. 2015;115(10):4400–4439.
  • Chou C, Kanji ZA, Stetzer O, et al. Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles. Atmos Chem Phys. 2013;13(2):761–772.
  • Corbin JC, Lohmann U, Sierau B, et al. Black carbon surface oxidation and organic composition of beech-wood soot aerosols. Atmos Chem Phys. 2015;15(20):11885–11907.
  • Brooks SD, Suter K, Olivarez L. Effects of chemical aging on the ice nucleation activity of soot and polycyclic aromatic hydrocarbon aerosols. J Phys Chem A. 2014;118(43):10036–10047.
  • Hiranuma N, Brooks SD, Moffet RC, et al. Chemical characterization of individual particles and residuals of cloud droplets and ice crystals collected on board research aircraft in the ISDAC 2008 study. J Geophys Res Atmos. 2013;118(12):6564–6579.
  • Kanji ZA, Welti A, Chou C, et al. Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles. Atmos Chem Phys. 2013;13(17):9097–9118.
  • Pöschl U, Shiraiwa M. Multiphase chemistry at the atmosphere–biosphere interface influencing climate and public health in the Anthropocene. Chem Rev. 2015;115(10):4440–4475.
  • Shanley RP, Hayes RB, Cromar KR, et al. Particulate air pollution and clinical cardiovascular disease risk factors. Epidemiology. 2016;27(2):291–298.
  • (a) Shi XF, Liu HB, Song Y. Pollutional haze as a potential cause of lung cancer. J Thorac Dis. 2015;7(10):E412–E417. (b) Kurt OK, Zhang JJ, Pinkerton KE. Pulmonary health effects of air pollution. Curr Opin Pulm Med. 2016;22(2):138–143.
  • Goldizen FC, Sly PD, Knibbs LD. Respiratory effects of air pollution on children. Pediatr Pulmonol. 2016;51(1):94–108.
  • Clemitshaw KC. A review of instrumentation and measurement techniques for ground-based and airborne field studies of gas-phase tropospheric chemistry. Crit Rev Environ Sci Technol. 2004;34(1):1–108.
  • Hornbrook RS, Crawford JH, Edwards GD, et al. Measurements of tropospheric HO2 and RO2 by oxygen dilution modulation and chemical ionization mass spectrometry. Atmos Meas Techn. 2011;4(4):735–756.
  • Heard DE. Atmospheric field measurements of the hydroxyl radical using laser-induced fluorescence spectroscopy. Annu Rev Phys Chem. 2006;57(1):191–216.
  • Stevens PS, Mather JH, Brune WH. Measuring OH and HO2 in the troposphere by laser-induced fluorescence at low-pressure. J Geophys Res. 1994;99(D2):3543–3557.
  • Brune WH, Stevens PS, Mather JH. Measuring OH and HO2 in the troposphere by laser-induced fluorescence at low-pressure. J Atmos Sci. 1995;52(19):3328–3336.
  • Green TJ, Reeves CE, Brough N, et al. Airborne measurements of peroxy radicals using the PERCA technique. J Environ Monitor. 2003;5(1):75–83.
  • Heard DE, Pilling MJ. Measurement of OH and HO2 in the troposphere. Chem Rev. 2003;103(12):5163–5198.
  • Feilberg KL, Sellevag SR, Nielsen CJ, et al. + OH− > CO2 + H: the relative reaction rate of five CO isotopologues. Phys Chem Chem Phys. 2002;4(19):4687–4693.
  • Watanabe T, Yoshida M, Fujiwara S, et al. Spin trapping of hydroxyl radical in the troposphere for determination by electron spin resonance and gas chromatography/mass spectrometry. Anal Chem. 1982;54(14):2470–2474.
  • Kuno N, Sakakibara K, Hirota M, et al. A new polymer-incorporated spin-trapping reagent aimed at environmental use. Reactions with organic free radicals. React Funct Polym. 2000;43(1–2):43–51.
  • Janzen EG, Wang YY. Spin trapping with immobilized spin traps. Poly(p[.alpha.-(N-tert-butylnitronyl)]styrene). J Phys Chem. 1979;83(7):894–896.
  • Du L, Huang SP, Zhuang QF, et al. Highly sensitive free radical detection by nitrone-functionalized gold nanoparticles. Nanoscale. 2014;6(3):1646–1652.
  • Besson E, Gastaldi S, Bloch E, et al. Embedding cyclic nitrone in mesoporous silica particles for EPR spin trapping of superoxide and other radicals. Analyst. 2019;144(14):4194–4203.
  • Selinsky BS, Levy LA, Motten AG, et al. Development of fluorinated, NMR-active spin traps for studies of free radical chemistry. J Magn Reson. 1989;81(1):57–67.
  • Khramtsov VV, Reznikov VA, Berliner LJ, et al. NMR spin trapping: detection of free radical reactions with a new fluorinated DMPO analog. Free Radic Biol Med. 2001;30(10):1099–1107.
  • Karoui H, Nsanzumuhire C, Le Moigne F, et al. Synthesis and spin-trapping properties of a trifluoromethyl analogue of DMPO: 5-methyl-5-trifluoromethyl-1-pyrroline N-oxide (5-TFDMPO). Chem Eur J. 2014;20(14):4064–4071.
  • Khramtsov V, Berliner LJ, Clanton TL. NMR spin trapping: detection of free radical reactions using a phosphorus-containing nitrone spin trap. Magn Reson Med. 1999;42(2):228–234.
  • Janzen EG, Zhang YK, Arimura M. Synthesis and spin-trapping chemistry of 5,5-dimethyl-2-(trifluoromethyl)-1-pyrroline N-oxide. J Org Chem. 1995;60(17):5434–5440.
  • Zhang F, Wei M, Dong J, et al. A recyclable organocascade reaction system: stereoselective precipitation of optically active cis-δ-lactols with quaternary stereocenters during the Michael-hemiacetalization reaction. Adv Synth Catal. 2010;352(17):2875–2880.
  • Motokura K, Tanaka S, Tada M, et al. Bifunctional heterogeneous catalysis of silica–alumina-supported tertiary amines with controlled acid–base interactions for efficient 1,4-addition reactions. Chem Eur J. 2009;15(41):10871–10879.
  • Stolze K, Rohr-Udilova N, Patel A, et al. Synthesis and characterization of 5-hydroxymethyl-5-methyl-pyrroline N-oxide and its derivatives. Bioorg Med Chem. 2011;19(2):985–993.
  • Clément JL, Ferré N, Siri D, et al. Assignment of the EPR spectrum of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) superoxide spin adduct. J Org Chem. 2005;70(4):1198–1203.
  • Stoll S, Schweiger A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson. 2006;178(1):42–55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.