242
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Regulation of NRF2 by Na+/K+-ATPase: implication of tyrosine phosphorylation of Src

& ORCID Icon
Pages 883-893 | Received 04 Aug 2019, Accepted 20 Jan 2020, Published online: 17 Mar 2020

References

  • Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells. 2011;16(2):123–140.
  • Itoh K, Wakabayashi N, Katoh Y, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13(1):76–86.
  • Dinkova-Kostova AT, Kostov RV, Canning P. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Arch Biochem Biophys. 2017;617:84–93.
  • Cuadrado A, Manda G, Hassan A, et al. Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach. Pharmacol Rev. 2018;70(2):348–383.
  • Menegon S, Columbano A, Giordano S. The dual roles of NRF2 in cancer. Trends Mol Med. 2016;22(7):578–593.
  • Chu XY, Liu YM, Zhang HY. Activating or inhibiting Nrf2? Trends Pharmacol Sci. 2017;38(11):953–955.
  • Yan Y, Shapiro JI. The physiological and clinical importance of sodium potassium ATPase in cardiovascular diseases. Curr Opin Pharmacol. 2016;27:43–49.
  • Glynn IM. A hundred years of sodium pumping. Annu Rev Physiol. 2002;64(1):1–18.
  • Bagrov AY, Shapiro JI, Fedorova OV. Endogenous cardiotonic steroids: physiology, pharmacology, and novel therapeutic targets. Pharmacol Rev. 2009;61(1):9–38.
  • Lee J, Kang JS, Nam LB, et al. Suppression of NRF2/ARE by convallatoxin sensitises A549 cells to 5-FU-mediated apoptosis. Free Radic Res. 2018;52(11–12):1416–1423.
  • Kang JS, Lee J, Nam LB, et al. Homoharringtonine stabilizes secondary structure of guanine-rich sequence existing in the 5′-untranslated region of Nrf2. Bioorg Med Chem Lett. 2019;29(16):2189–2196.
  • Lee J, Mailar K, Yoo OK, et al. Marliolide inhibits skin carcinogenesis by activating NRF2/ARE to induce heme oxygenase-1. Eur J Med Chem. 2018;150:113–126.
  • Elbaz HA, Stueckle TA, Tse W, et al. Digitoxin and its analogs as novel cancer therapeutics. Exp Hematol Oncol. 2012;1(1):4.
  • Smith TW. Digitalis. Mechanisms of action and clinical use. N Engl J Med. 1988;318(6):358–365.
  • Mitsuishi Y, Motohashi H, Yamamoto M. The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Front Oncol. 2012;2:200.
  • Roskoski R Jr. Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Commun. 2005;331(1):1–14.
  • Okada M, Nada S, Yamanashi Y, et al. CSK: a protein-tyrosine kinase involved in regulation of Src family kinases. J Biol Chem. 1991;266(36):24249–24252.
  • Shattock MJ, Ottolia M, Bers DM, et al. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart. J Physiol. 2015;593(6):1361–1382.
  • Bai X, Chen Y, Hou X, et al. Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab Rev. 2016;48(4):541–567.
  • Alam MM, Okazaki K, Nguyen LTT, et al. Glucocorticoid receptor signaling represses the antioxidant response by inhibiting histone acetylation mediated by the transcriptional activator NRF2. J Biol Chem. 2017;292(18):7519–7530.
  • Huang HC, Nguyen T, Pickett CB. Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. Proc Natl Acad Sci USA. 2000;97(23):12475–12480.
  • Niture SK, Jain AK, Shelton PM, et al. Src subfamily kinases regulate nuclear export and degradation of transcription factor Nrf2 to switch off Nrf2-mediated antioxidant activation of cytoprotective gene expression. J Biol Chem. 2011;286(33):28821–28832.
  • Keum YS, Choi BY. Molecular and chemical regulation of the Keap1-Nrf2 signaling pathway. Molecules. 2014;19(7):10074–10089.
  • Rada P, Rojo AI, Chowdhry S, et al. SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol. 2011;31(6):1121–1133.
  • Cuadrado A, Rojo AI, Wells G, et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov. 2019;18(4):295–317.
  • Schneider NFZ, Cerella C, Simões CMO, et al. Anticancer and immunogenic properties of cardiac glycosides. Molecules. 2017;22(11):1932.
  • Rothschild SI, Gautschi O, Haura EB, et al. Src inhibitors in lung cancer: current status and future directions. Clin Lung Cancer. 2010;11(4):238–242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.