181
Views
3
CrossRef citations to date
0
Altmetric
Reviews

In vivo analysis of redox status in organs – from bench to bedside

, , , , , , & show all
Pages 961-968 | Received 31 Aug 2019, Accepted 09 May 2020, Published online: 10 Sep 2020

References

  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.
  • Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197–223.
  • Forman HJ, Torres M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med. 2002;166:S4–S8.
  • Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000;86:494–501.
  • Adachi T, Togashi H, Suzuki A, et al. NAD(P)H oxidase plays a crucial role in PDGF-induced proliferation of hepatic stellate cells. Hepatology. 2005;41:1272–1281.
  • Vignais PV. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci. 2002;59:1428–1459.
  • Negre-Salvayre A, Auge N, Ayala V, et al. Pathological aspects of lipid peroxidation. Free Radic Res. 2010;44:1125–1171.
  • Togashi H, Oikawa K, Adachi T, et al. Mucosal sulfhydryl compounds evaluation by in vivo electron spin resonance spectroscopy in mice with experimental colitis. Gut. 2003;52:1291–1296.
  • Matsumoto KI, Endo K, Utsumi H. In vivo electron spin resonance assessment of decay constant of nitroxyl radical in selenium-deficient rat. Biol Pharm Bull. 2000;23:641–644.
  • Emoto MC, Matsuoka Y, Yamada KI, et al. Non-invasive imaging of the levels and effects of glutathione on the redox status of mouse brain using electron paramagnetic resonance imaging. Biochem Biophys Res Commun. 2017;485:802–806.
  • Matsumoto K, Hyodo F, Matsumoto A, et al. High-resolution mapping of tumor redox status by magnetic resonance imaging using nitroxides as redox-sensitive contrast agents. Clin Cancer Res. 2006;12:2455–2462. 15
  • Hyodo F, Matsumoto K, Matsumoto A, et al. Probing the intracellular redox status of tumors with magnetic resonance imaging and redox-sensitive contrast agents. Cancer Res. 2006;66:9921–9928.
  • Lau AT, Wang Y, Chiu JF. Reactive oxygen species: current knowledge and applications in cancer research and therapeutic. J Cell Biochem. 2008;104:657–667.
  • Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.
  • Ogura R, Sugiyama M, Haramaki N, et al. Electron spin resonance studies on the mechanism of adriamycin-induced heart mitochondrial damages. Cancer Res. 1991;51:3555–3558.
  • Scheinok S, Leveque P, Sonveaux P, et al. Comparison of different methods for measuring the superoxide radical by EPR spectroscopy in buffer, cell lysates and cells. Free Radic Res. 2018;52:1182–1196.
  • Arroyo CM, Kramer JH, Dickens BF, et al. Identification of free radicals in myocardial ischemia/reperfusion by spin trapping with nitrone DMPO. FEBS Lett. 1987;221:101–104.
  • Togashi H, Shinzawa H, Yong H, et al. Ascorbic acid radical, superoxide, and hydroxyl radical are detected in reperfusion injury of rat liver using electron spin resonance spectroscopy. Arch Biochem Biophys. 1994;308:1–7.
  • Ishida S, Matsumoto S, Yokoyama H, et al. An ESR-CT imaging of the head of a living rat receiving an administration of a nitroxide radical. Magn Reson Imaging. 1992;10:109–114.
  • Utsumi H, Takeshita K, Miura Y, et al. In vivo EPR measurement of radical reaction in whole mice–influence of inspired oxygen and ischemia-reperfusion injury on nitroxide reduction. Free Radic Res Commun. 1993;19:S219–S225.
  • Tada M, Yokoyama H, Ito O, et al. Evaluation of the hepatic reduction of a nitroxide radical in rats receiving ascorbic acid, glutathione or ascorbic acid oxidase by in vivo electron spin resonance study. J Gastroenterol Hepatol. 2004;19:99–105.
  • Togashi H, Shinzawa H, Ogata T, et al. Spatiotemporal measurement of free radical elimination in the abdomen using an in vivo ESR-CT imaging system. Free Radic Biol Med. 1998;25:1–8.
  • Togashi H, Shinzawa H, Matsuo T, et al. Analysis of hepatic oxidative stress status by electron spin resonance spectroscopy and imaging. Free Radic Biol Med. 2000;28:846–853.
  • Sano T, Umeda F, Hashimoto T, et al. Oxidative stress measurement by in vivo electron spin resonance spectroscopy in rats with streptozotocin-induced diabetes. Diabetologia. 1998;41:1355–1360.
  • Vallyathan V, Leonard S, Kuppusamy P, et al. Oxidative stress in silicosis: evidence for the enhanced clearance of free radicals from whole lungs. Mol Cell Biochem. 1997;168:125–132.
  • Kuppusamy P, Li H, Ilangovan G, et al. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res. 2002;62:307–312.
  • Yoshimura T, Yokoyama H, Fujii S, et al. In vivo EPR detection and imaging of endogenous nitric oxide in lipopolysaccharide-treated mice. Nat Biotechnol. 1996;14:992–994.
  • Kato N, Sato S, Yokoyama H, et al. Sequential changes of nitric oxide levels in the temporal lobes of kainic acid-treated mice following application of nitric oxide synthase inhibitors and phenobarbital. Epilepsy Res. 2005;65:81–91.
  • Yokoyama H, Itoh O, Aoyama M, et al. In vivo EPR imaging by using an acyl-protected hydroxylamine to analyze intracerebral oxidative stress in rats after epileptic seizures. Magn Reson Imaging. 2000;18:875–879.
  • Togashi H, Aoyama M, Oikawa K. Imaging of reactive oxygen species generated in vivo. Magn Reson Med. 2016;75:1375–1379.
  • Hyodo F, Chuang KH, Goloshevsky AG, et al. Brain redox imaging using blood-brain barrier-permeable nitroxide MRI contrast agent. J Cereb Blood Flow Metab. 2008;28:1165–1174.
  • Emoto MC, Yamada K, Yamato M, et al. Novel ascorbic acid-resistive nitroxide in a lipid emulsion: an efficient brain imaging contrast agent for MRI of small rodents. Neurosci Lett. 2013;546:11–15.
  • Bacic G, Pavicevic A, Peyrot F. In vivo evaluation of different alterations of redox status by studying pharmacokinetics of nitroxides using magnetic resonance techniques. Redox Biol. 2016;8:226–242.
  • Matsumoto KI, Mitchell JB, Krishna MC. Comparative studies with EPR and MRI on the in vivo tissue redox status estimation using redox-sensitive nitroxyl probes: influence of the choice of the region of interest. Free Radic Res. 2018;52:248–255.
  • Uchida T, Togashi H, Kuroda Y, et al. In vivo visualization of redox status by high-resolution whole body magnetic resonance imaging using nitroxide radicals. J Clin Biochem Nutr. 2018;63:192–196.
  • Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 2015;6:524–551.
  • Feng J, Chen X, Liu R, et al. Melatonin protects against myocardial ischemia-reperfusion injury by elevating Sirtuin3 expression and manganese superoxide dismutase activity. Free Radic Res. 2018;52:840–849.
  • Lurie DJ, Bussell DM, Bell LH, et al. Proton electron double magnetic-resonance imaging of free-radical solutions. J Magn Reson. 1988;76:366–370.
  • Utsumi H, Yamada K, Ichikawa K, et al. Simultaneous molecular imaging of redox reactions monitored by Overhauser-enhanced MRI with 14N- and 15N-labeled nitroxyl radicals. Proc Natl Acad Sci U S A. 2006;103:1463–1468.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.