787
Views
24
CrossRef citations to date
0
Altmetric
Review Articles

Understanding the antioxidant and carbonyl sequestering activity of carnosine: direct and indirect mechanisms

, , , , , , , , & show all
Pages 321-330 | Received 21 Sep 2020, Accepted 23 Nov 2020, Published online: 11 Dec 2020

References

  • Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine. Physiol Rev. 2013;93(4):1803–1845.
  • Tanaka K-I, Kawahara M. Carnosine and lung disease. Curr Med Chem. 2020;27(11):1714–1725.
  • Menini S, Iacobini C, Fantauzzi CB, et al. L-carnosine and its derivatives as new therapeutic agents for the prevention and treatment of vascular complications of diabetes. Curr Med Chem. 2020;27(11):1744–1763.
  • Baye E, Ukropec J, De Courten MPJ, et al. Carnosine supplementation improves serum resistin concentrations in overweight or obese otherwise healthy adults: a pilot randomized trial. Nutrients. 2018;10(9):1258.
  • Baye E, Ukropec J, de Courten MPJ, et al. Effect of carnosine supplementation on the plasma lipidome in overweight and obese adults: a pilot randomised controlled trial. Sci Rep. 2017;7(1):17458.
  • Baye E, Ukropcova B, Ukropec J, et al. Physiological and therapeutic effects of carnosine on cardiometabolic risk and disease. Amino Acids. 2016;48(5):1131–1149.
  • Schön M, Mousa A, Berk M, et al. The potential of carnosine in brain-related disorders: a comprehensive review of current evidence. Nutrients. 2019;11(6):1196.
  • Katarzyna K-P. Carnosine and kidney diseases: what we currently know? Curr Med Chem. 2020;27(11):1764–1781.
  • Chmielewska K, Dzierzbicka K, Inkielewicz-Stępniak I, et al. Therapeutic potential of carnosine and its derivatives in the treatment of human diseases. Chem Res Toxicol. 2020;33(7):1561–1578.
  • Ghodsi R, Kheirouri S. Carnosine and advanced glycation end products: a systematic review. Amino Acids. 2018;50(9):1177–1186.
  • Davies SS, Zhang LS. Reactive carbonyl species scavengers: novel therapeutic approaches for chronic diseases. Curr Pharmacol Rep. 2017;3(2):51–67.
  • Zhao J, Conklin DJ, Guo Y, et al. Cardiospecific overexpression of ATPGD1 (carnosine synthase) increases histidine dipeptide levels and prevents myocardial ischemia reperfusion injury. J Am Heart Assoc. 2020;9(12):e015222.
  • Mahootchi E, Cannon Homaei S, Kleppe R, et al. GADL1 is a multifunctional decarboxylase with tissue-specific roles in β-alanine and carnosine production. Sci Adv. 2020;6(29):eabb3713.
  • Ihara H, Kakihana Y, Yamakage A, et al. 2-Oxo-histidine-containing dipeptides are functional oxidation products . J Biol Chem. 2019;294(4):1279–1289.
  • Carroll L, Karton A, Radom L, et al. Carnosine and carcinine derivatives rapidly react with hypochlorous acid to form chloramines and dichloramines. Chem Res Toxicol. 2019;32(3):513–525.
  • Mou Y, Wen S, Li Y-X, et al. Recent progress in Keap1-Nrf2 protein-protein interaction inhibitors. Eur J Med Chem. 2020;202:112532.
  • Alsheblak MM, Elsherbiny NM, El-Karef A, et al. Protective effects of L-carnosine on CCl4 -induced hepatic injury in rats. Eur Cytokine Netw. 2016;27(1):6–15.
  • Ahshin-Majd S, Zamani S, Kiamari T, et al. Carnosine ameliorates cognitive deficits in streptozotocin-induced diabetic rats: possible involved mechanisms. Peptides. 2016;86:102–111.
  • Zhao K, Li Y, Wang Z, et al. Carnosine protects mouse podocytes from high glucose induced apoptosis through PI3K/AKT and Nrf2 pathways. Biomed Res Int. 2019;2019:4348973.
  • Scuto M, Trovato Salinaro A, Modafferi S, et al. Carnosine activates cellular stress response in podocytes and reduces glycative and lipoperoxidative stress. Biomedicines. 2020;8(6):177.
  • Yehia R, Saleh S, Abhar HE, et al. L-Carnosine protects against oxaliplatin-induced peripheral neuropathy in colorectal cancer patients: a perspective on targeting Nrf-2 and NF-κB pathways. Toxicol Appl Pharmacol. 2019;365:41–50.
  • Ooi TC, Chan KM, Sharif R. Protective effects of zinc L-carnosine against hydrogen peroxide-induced DNA damage and micronucleus formation in CCD-18co human colon fibroblast cells. Free Radic Res. 2020;54(5):330–340.
  • Ooi TC, Chan KM, Sharif R. Zinc l-carnosine protects CCD-18co cells from l-buthionine sulfoximine–induced oxidative stress via the induction of metallothionein and superoxide dismutase 1 expression. Biol Trace Elem Res. 2020;198(2):464–471.
  • Robledinos-Antón N, Fernández-Ginés R, Manda G, et al. Activators and inhibitors of NRF2: a review of their potential for clinical development. Oxid Med Cell Longev. 2019; 2019(2019):9372182.
  • Liang H, Ward WF. PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ. 2006;30(4):145–151.
  • Schaalan MF, Ramadan BK, Abd Elwahab AH. Synergistic effect of carnosine on browning of adipose tissue in exercised obese rats; a focus on circulating irisin levels. J Cell Physiol. 2018;233(6):5044–5057.
  • Rezzani R, Favero G, Ferroni M, et al. A carnosine analog with therapeutic potentials in the treatment of disorders related to oxidative stress. PLoS One. 2019;14(4):e0215170.
  • Baldelli S, Aquilano K, Ciriolo MR. Punctum on two different transcription factors regulated by PGC-1α: Nuclear factor erythroid-derived 2-like 2 and nuclear respiratory factor 2. Biochim Biophys Acta. 2013;1830(8):4137–4146.
  • Vargas-Mendoza N, Morales-González Á, Madrigal-Santillán EO, et al. Antioxidant and adaptative response mediated by Nrf2 during physical exercise. Antioxidants. 2019;8(6):196.
  • Gureev AP, Shaforostova EA, Popov VN. Regulation of mitochondrial biogenesis as a way for active longevity: interaction between the Nrf2 and PGC-1α signaling pathways. Front Genet. 2019;10:435.
  • Vistoli G, Aldini G, Fumagalli L, et al. Activation effects of carnosine- and histidine-containing dipeptides on human carbonic anhydrases: a comprehensive study. IJMS. 2020;21(5):1761.
  • Provensi G, Carta F, Nocentini A, et al. A new kid on the block? IJMS. 2019;20(19):4724.
  • Masuoka N, Yoshimine C, Hori M, et al. Effects of anserine/carnosine supplementation on mild cognitive impairment with APOE4. Nutrients. 2019;11(7):1626.
  • Gilardoni E, Baron G, Altomare A, et al. The disposal of reactive carbonyl species through carnosine conjugation: what we know now. Curr Med Chem. 2020;27(11):1726–1743.
  • Aldini G, Carini M, Yeum K-J, et al. Novel molecular approaches for improving enzymatic and nonenzymatic detoxification of 4-hydroxynonenal: toward the discovery of a novel class of bioactive compounds. Free Radic Biol Med. 2014;69:145–156.
  • Vistoli G, Colzani M, Mazzolari A, et al. Quenching activity of carnosine derivatives towards reactive carbonyl species: focus on α-(methylglyoxal) and β-(malondialdehyde) dicarbonyls. Biochem Biophys Res Commun. 2017;492(3):487–492.
  • Colzani M, De Maddis D, Casali G, et al. Reactivity, selectivity, and reaction mechanisms of aminoguanidine, hydralazine, pyridoxamine, and carnosine as sequestering agents of reactive carbonyl species: a comparative study. ChemMedChem. 2016;11(16):1778–1789.
  • Nelson M-AM, Builta ZJ, Monroe TB, et al. Biochemical characterization of the catecholaldehyde reactivity of l-carnosine and its therapeutic potential in human myocardium. Amino Acids. 2019;51(1):97–102.
  • Tatsuno F, Lee SH, Oe T. Imidazole dipeptides can quench toxic 4-oxo-2(E)-nonenal: Molecular mechanism and mass spectrometric characterization of the reaction products. J Pept Sci. 2018;24(8–9):e3097.
  • Price DL, Rhett PM, Thorpe SR, et al. Chelating activity of advanced glycation end-product inhibitors. J Biol Chem. 2001;276(52):48967–48972.
  • Zhao J, Posa DK, Kumar V, et al. Carnosine protects cardiac myocytes against lipid peroxidation products. Amino Acids. 2019;51(1):123–138.
  • Orioli M, Aldini G, Benfatto MC, et al. HNE michael adducts to histidine and histidine-containing peptides as biomarkers of lipid-derived carbonyl stress in urines: LC-MS/MS profiling in Zucker obese rats. Anal Chem. 2007;79(23):9174–9184.
  • Baba SP, Hoetker JD, Merchant M, et al. Role of aldose reductase in the metabolism and detoxification of carnosine-acrolein conjugates. J Biol Chem. 2013;288(39):28163–28179.
  • Anderson EJ, Vistoli G, Katunga LA, et al. A carnosine analog mitigates metabolic disorders of obesity by reducing carbonyl stress. J Clin Invest. 2018;128(12):5280–5293.
  • Regazzoni L, de Courten B, Garzon D, et al. A carnosine intervention study in overweight human volunteers: bioavailability and reactive carbonyl species sequestering effect. Sci Rep. 2016;6:27224.
  • Bispo VS, de Arruda Campos IP, Mascio PD, et al. Structural elucidation of a carnosine-acrolein adduct and its quantification in human urine samples. Sci Rep. 2016;6(1):19348.
  • Carvalho VH, Oliveira AHS, de Oliveira LF, et al. Exercise and β-alanine supplementation on carnosine-acrolein adduct in skeletal muscle. Redox Biol. 2018;18:222–228.
  • Hipkiss AR, Brownson C, Carrier MJ. Carnosine, the anti-ageing, anti-oxidant dipeptide, may react with protein carbonyl groups. Mech Ageing Dev. 2001;122(13):1431–1445.
  • Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2. Antioxid Redox Signal. 2018;29(17):1727–1745.
  • Vistoli G, De Maddis D, Cipak A, et al. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radical Res. 2013;47(sup1):3–27.
  • Saeed M, Kausar MA, Singh R, et al. The role of glyoxalase in glycation and carbonyl stress induced metabolic disorders. Curr Protein Pept Sci. 2020;21:1–15.
  • Yılmaz Z, Kalaz EB, Aydın AF, et al. The effect of carnosine on methylglyoxal-induced oxidative stress in rats. Arch Physiol Biochem. 2017;123(3):192–198.
  • Perker MC, Orta Yilmaz B, Yildizbayrak N, et al. Protective effects of curcumin on biochemical and molecular changes in sodium arsenite-induced oxidative damage in embryonic fibroblast cells. J Biochem Mol Toxicol. 2019;33(7):e22320.
  • Weigand T, Singler B, Fleming T, et al. Carnosine catalyzes the formation of the oligo/polymeric products of methylglyoxal. Cell Physiol Biochem. 2018;46(2):713–726.
  • Rabbani N, Thornalley PJ. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem Biophys Res Commun. 2015;458(2):221–226.
  • Xue M, Rabbani N, Momiji H, et al. Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation. Biochem J. 2012;443(1):213–222.
  • Petersen DR, Saba LM, Sayin VI, et al. Elevated Nrf-2 responses are insufficient to mitigate protein carbonylation in hepatospecific PTEN deletion mice. PLoS One. 2018;13(5):e0198139.
  • Madden SK, Itzhaki LS. Structural and mechanistic insights into the Keap1-Nrf2 system as a route to drug discovery. Biochim Biophys Acta Proteins Proteom. 2020;1868(7):140405.
  • Pergola PE, Raskin P, Toto RD, et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med. 2011;365(4):327–336.
  • Chin MP, Wrolstad D, Bakris GL, et al. Risk factors for heart failure in patients with type 2 diabetes mellitus and stage 4 chronic kidney disease treated with bardoxolone methyl. J Card Fail. 2014;20(12):953–958.
  • Lee C. Collaborative power of Nrf2 and PPARγ activators against metabolic and drug-induced oxidative injury. Oxid Med Cell Longev. 2017; 2017(2017):1378175.
  • Cai W, Yang T, Liu H, et al. Peroxisome proliferator-activated receptor γ (PPARγ): a master gatekeeper in CNS injury and repair. Prog Neurobiol. 2018;163-164:27–58.
  • Weinberg JM. Mitochondrial biogenesis in kidney disease. J Am Soc Nephrol. 2011;22(3):431–436.
  • Corona JC, Duchen MR. PPARγ and PGC-1α as therapeutic targets in Parkinson’s. Neurochem Res. 2015;40(2):308–316.
  • Suzuki M, Betsuyaku T, Ito Y, et al. Down-regulated NF-E2–related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2008;39(6):673–682.
  • Boutten A, Goven D, Artaud-Macari E, et al. NRF2 targeting: a promising therapeutic strategy in chronic obstructive pulmonary disease. Trends Mol Med. 2011;17(7):363–371.
  • Fratta Pasini AM, Stranieri C, Ferrari M, et al. Oxidative stress and Nrf2 expression in peripheral blood mononuclear cells derived from COPD patients: an observational longitudinal study. Respir Res. 2020;21(1):37.
  • Mohan T, Narasimhan KKS, Ravi DB, et al. Role of Nrf2 dysfunction in the pathogenesis of diabetic nephropathy: therapeutic prospect of epigallocatechin-3-gallate. Free Radic Biol Med. 2020;160:227–238.
  • Chien C-Y, Wen T-J, Cheng Y-H, et al. Diabetes upregulates oxidative stress and downregulates cardiac protection to exacerbate myocardial ischemia/reperfusion injury in rats. Antioxidants. 2020;9(8):679.
  • Sachdeva MM, Cano M, Handa JT. Nrf2 signaling is impaired in the aging RPE given an oxidative insult. Exp Eye Res. 2014;119:111–114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.