1,343
Views
70
CrossRef citations to date
0
Altmetric
Review Articles

Role of oxidative stress in nanoparticles toxicity

ORCID Icon &
Pages 331-342 | Received 27 Oct 2020, Accepted 26 Nov 2020, Published online: 18 Dec 2020

References

  • Sruthi S, Maurizi L, Nury T, et al. Cellular interactions of functionalized superparamagnetic iron oxide nanoparticles on oligodendrocytes without detrimental side effects: cell death induction, oxidative stress and inflammation. Colloids Surf B Biointerfaces. 2018;170:454–462.
  • Park EJ, Choi J, Park YK, et al. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology. 2008;245:90–100.
  • Ali D, Alarifi S, Alkahtani S, et al. Cerium oxide nanoparticles induce oxidative stress and genotoxicity in human skin melanoma cells. Cell Biochem Biophys. 2015;71(3):1643–1651.
  • Azari A, Shokrzadeh M, Zamani E, et al. Cerium oxide nanoparticles protects against acrylamide induced toxicity in HepG2 cells through modulation of oxidative stress. Drug Chem Toxicol. 2019;42:54–59.
  • Carvajal S, Perramón M, Casals G, et al. Cerium oxide nanoparticles protect against oxidant injury and interfere with oxidative mediated kinase signaling in human-derived hepatocytes. Int J Mol Sci. 2019;20(23):5959.
  • Horie M, Fujita K, Kato H, et al. Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area. Metallomics. 2012;4(4):350–360.
  • Horie M, Komaba LK, Kato H, et al. Evaluation of cellular influences induced by stable nanodiamond dispersion; the cellular influences of nanodiamond. Diam Relat Mater. 2012;24:15–24.
  • Horie M, Fukui H, Nishio K, et al. Evaluation of acute oxidative stress induced by NiO nanoparticles in vivo and in vitro. J Occup Health. 2011;53:64–74.
  • Sies H. Oxidative stress: from basic research to clinical application. Am J Med. 1991;91(3):S31–S38.
  • Maurizi L, Papa AL, Boudon J, et al. Toxicological risk assessment of emerging nanomaterials: cytotoxicity, cellular uptake, effects on biogenesis and cell organelle activity, acute toxicity and biodistribution of oxide nanoparticles. In: Gomes AC, Sárria MP, editors. Unraveling the safety profile of nanoscale particles and materials. London: IntechOpen Limited; 2018.
  • Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 2005;15:316–328.
  • Kasai H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res. 1997;387:147–163.
  • Valavanidis A, Vlachogianni T, Fiotakis C. 8-Hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2009;27:120–139.
  • Lee S, Tak E, Lee J, et al. Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation. Cell Res. 2011;21:817–834.
  • Suski JM, Lebiedzinska M, Bonora M, et al. Relation between mitochondrial membrane potential and ROS formation. Methods Mol Biol. 2012;810:183–205.
  • Marchi S, Giorgi C, Suski JM, et al. Mitochondria-ros crosstalk in the control of cell death and aging. J Signal Transduct. 2012;2012:329635.
  • Gaspar R, Préat V, Opperdoes FR, et al. Macrophage activation by polymeric nanoparticles of polyalkylcyanoacrylates: activity against intracellular Leishmania donovani associated with hydrogen peroxide production. Pharm Res. 1992;9:782–787.
  • Song W, Zhang J, Guo J, et al. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett. 2010;199:389–397.
  • Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12:1161–1208.
  • Dhakshinamoorthy A, Navalon S, Alvaro M, et al. Metal nanoparticles as heterogeneous Fenton catalysts. Chem Sus Chem. 2012;5(1):46–64.
  • Leonard SS, Harris GK, Shi X. Metal-induced oxidative stress and signal transduction. Free Radic Biol Med. 2004;37:1921–1942.
  • Horie M, Sugino S, Kato H, et al. Does photocatalytic activity of TiO2 nanoparticles correspond to photo-cytotoxicity? Cellular uptake of TiO2 nanoparticles is important in their photo-cytotoxicity. Toxicol Mech Methods. 2016;26:284–294.
  • Chen L, Wu M, Jiang S, et al. Skin toxicity assessment of silver nanoparticles in a 3D epidermal model compared to 2D keratinocytes. Int J Nanomedicine. 2019;14:9707–9719.
  • Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–38.
  • Reeves JF, Davies SJ, Dodd NJ, et al. Hydroxyl radicals (*OH) are associated with titanium dioxide (TiO(2)) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res. 2008;640(1–2):113–122.
  • Dodd NJ, Jha AN. Titanium dioxide induced cell damage: a proposed role of the carboxyl radical. Mutat Res. 2009;660:79–82.
  • Sayes CM, Wahi R, Kurian PA, et al. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci. 2006;92:174–185.
  • Xue C, Wu J, Lan F, et al. Nano titanium dioxide induces the generation of ROS and potential damage in HaCaT cells under UVA irradiation. J Nanosci Nanotechnol. 2010;10(12):8500–8507.
  • Adachi K, Yamada N, Yamamoto K, et al. In vivo effect of industrial titanium dioxide nanoparticles experimentally exposed to hairless rat skin. Nanotoxicology. 2010;4:296–306.
  • Xia T, Kovochich M, Brant J, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006;6:1794–1807.
  • Fenoglio I, Greco G, Livraghi S, et al. Non-UV-induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses. Chemistry. 2009;15:4614–4621.
  • Jayaram DT, Payne CK. Intracellular generation of superoxide by TiO2 nanoparticles decreases histone deacetylase 9 (HDAC9), an epigenetic modifier. Bioconjug Chem. 2020;31:1354–1361.
  • Horie M, Nishio K, Fujita K, et al. Cellular responses by stable and uniform ultrafine titanium dioxide particles in culture-medium dispersions when secondary particle size was 100 nm or less. Toxicol In Vitro. 2010;24:1629–1638.
  • Gurr J-R, Wang AS, Chen C-H, et al. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005;213(1-2):66–73.
  • Rihane N, Nury T, M’rad I, et al. Microglial cells (BV-2) internalize titanium dioxide (TiO2) nanoparticles: toxicity and cellular responses. Environ Sci Pollut Res. 2016;23(10):9690–9699.
  • Xia T, Kovochich M, Liong M, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008;2(10):2121–2134.
  • Sruthi S, Nury T, Millot N, et al. Evidence of a non-apoptotic mode of cell death in microglial BV-2 cells exposed to different concentrations of zinc oxide nanoparticles. Environ Sci Pollut Res Int. 2020.DOI:https://doi.org/10.1007/s11356-020-11100-8
  • Huang CC, Aronstam RS, Chen DR, et al. Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol In Vitro. 2010;24(1):45–55.
  • Sirelkhatim A, Mahmud S, Seeni A, et al. Preferential cytotoxicity of ZnO nanoparticle towards cervical cancer cells induced by ROS-mediated apoptosis and cell cycle arrest for cancer therapy. J Nanopart Res. 2016;18(8):219.
  • Liao C, Jin Y, Li Y, et al. Interactions of zinc oxide nanostructures with mammalian cells: cytotoxicity and photocatalytic toxicity. Int J Mol Sci. 2020;21(17):6305.
  • Horie M, Nishio K, Endoh S, et al. Chromium(III) oxide nanoparticles induced remarkable oxidative stress and apoptosis on culture cells. Environ Toxicol. 2013;28:61–75.
  • Karlsson HL, Cronholm P, Gustafsson J, et al. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol. 2008;21(9):1726–1732.
  • Horie M, Nishio K, Fujita K, et al. Ultrafine NiO particles induce cytotoxicity in vitro by cellular uptake and subsequent Ni(II) release. Chem Res Toxicol. 2009;22:1415–1426.
  • Xue Y, Zhang T, Zhang B, et al. Cytotoxicity and apoptosis induced by silver nanoparticles in human liver HepG2 cells in different dispersion media. J Appl Toxicol. 2016;36:352–360.
  • Tang J, Lu X, Chen B, et al. Mechanisms of silver nanoparticles-induced cytotoxicity and apoptosis in rat tracheal epithelial cells. J Toxicol Sci. 2019;44:155–165.
  • Avalos A, Haza AI, Mateo D, et al. Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J Appl Toxicol. 2014;34:413–423.
  • Li Y, Zhao J, Shang E, et al. Effects of chloride ions on dissolution, ROS generation, and toxicity of silver nanoparticles under UV irradiation. Environ Sci Technol. 2018;52:4842–4849.
  • Poirier M, Simard JC, Girard D. Silver nanoparticles of 70 nm and 20 nm affect differently the biology of human neutrophils. J Immunotoxicol. 2016;13:375–385.
  • Gliga AR, Skoglund S, Wallinder IO, et al. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014;11:11.
  • Chairuangkitti P, Lawanprasert S, Roytrakul S, et al. Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol In Vitro. 2013;27(1):330–338.
  • Song Y, Guan R, Lyu F, et al. In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells. Mutat Res. 2014;769:113–118.
  • Sharma V, Anderson D, Dhawan A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis. 2012;17:852–870.
  • Li J, Zhang B, Chang X, et al. Silver nanoparticles modulate mitochondrial dynamics and biogenesis in HepG2 cells. Environ Pollut. 2020;256:113430.
  • Moriyama A, Takahashi U, Mizuno Y, et al. The truth of toxicity caused by yttrium oxide nanoparticles to yeast cells. J Nanosci Nanotechnol. 2019;19:5418–5425.
  • Cedervall T, Lynch I, Lindman S, et al. Understanding the nanoparticle—protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A. 2007;104:2050–2055.
  • Horie M, Nishio K, Fujita K, et al. Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Chem Res Toxicol. 2009;22:543–553.
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56–58.
  • Bernholc J, Brenner D, Buongiorno Nardelli M, et al. Mechanical and electrical properties of nanotubes. Annu Rev Mater Res. 2002;32(1):347–375.
  • De Volder MF, Tawfick SH, Baughman RH, et al. Carbon nanotubes: present and future commercial applications. Science. 2013;339:535–539.
  • Marchesan S, Kostarelos K, Bianco A, et al. The winding road for carbon nanotubes in nanomedicine. Mater Today. 2015;18(1):12–19.
  • Takagi A, Hirose A, Nishimura T, et al. Induction of mesothelioma in p53+/– mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci. 2008;33:105–116.
  • Poland CA, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 2008;3:423–428.
  • Nagai H, Okazaki Y, Chew SH, et al. Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci U S A. 2011;108:E1330–E1338.
  • Alshehri R, Ilyas AM, Hasan A, et al. Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J Med Chem. 2016;59:8149–8167.
  • Dong J, Ma Q. Advances in mechanisms and signaling pathways of carbon nanotube toxicity. Nanotoxicology. 2015;9:658–676.
  • Jović D, Jaćević V, Kuća K, et al. The puzzling potential of carbon nanomaterials: general properties, application, and toxicity. Nanomaterials. 2020;10(8):1508.
  • Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int. 2013;2013:942916.
  • Kang S, Kim JE, Kim D, et al. Comparison of cellular toxicity between multi-walled carbon nanotubes and onion-like shell-shaped carbon nanoparticles. J Nanopart Res. 2015;17:378.
  • Harik VM. Geometry of carbon nanotubes and mechanism of phagocytosis and toxic effects. Toxicol Lett. 2017;273:69–85.
  • Thurnherr T, Su DS, Diener L, et al. Comprehensive evaluation of in vitro toxicity of three large-scale produced carbon nanotubes on human Jurkat T cells and a comparison to crocidolite asbestos. Nanotoxicology. 2009;3(4):319–338.
  • Manshian BB, Jenkins GJS, Williams PM, et al. Single-walled carbon nanotubes: differential genotoxic potential associated with physico-chemical properties. Nanotoxicology. 2013;7(2):144–156.
  • Brown DM, Kinloch IA, Bangert U, et al. An in vitro study of the potential of carbon nanotubes and nanofibers to induce inflammatory mediators and frustrated phagocytosis. Carbon. 2007;45(9):1743–1756.
  • Jiang Y, Zhang H, Wang Y, et al. Modulation of apoptotic pathways of macrophages by surface-functionalized multi-walled carbon nanotubes. PLoS One. 2013;8:e65756.
  • Pietroiusti A, Massimiani M, Fenoglio I, et al. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development. ACS Nano. 2011;5:4624–4633.
  • Patlolla AK, Berry A, Tchounwou PB. Study of hepatotoxicity and oxidative stress in male Swiss-Webster mice exposed to functionalized multi-walled carbon nanotubes. Mol Cell Biochem. 2011;358:189–199.
  • Farombi EO, Adedara IA, Forcados GE, et al. Responses of testis, epididymis, and sperm of pubertal rats exposed to functionalized multiwalled carbon nanotubes. Environ Toxicol. 2016;31:543–551.
  • Jung YS, Lim WT, Parl JY, et al. Effect of pH on Fenton and Fenton-like oxidation. Environ Technol. 2009;30:183–190.
  • Toyokuni S. Iron addiction with ferroptosis-resistance in asbestos-induced mesothelial carcinogenesis: toward the era of mesothelioma prevention. Free Radic Biol Med. 2019;133:206–215.
  • Kagan VE, Tyurina YY, Tyurin VA, et al. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett. 2006;165:88–100.
  • Pulskamp K, Diabaté S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett. 2007;168:58–74.
  • Poter DW, Hubbs AF, Chen BT, et al. Acute pulmonary dose–response to inhaled multi-walled carbon nanotubes. Nanotoxicology. 2013;7:1179–1194.
  • Fujita K, Fukuda M, Endoh S, et al. Physical properties of single-wall carbon nanotubes in cell culture and their dispersal due to alveolar epithelial cell response. Toxicol Mech Methods. 2013;23:598–609.
  • Tabei Y, Fukui H, Nishioka A, et al. Effect of iron overload from multi walled carbon nanotubes on neutrophil-like differentiated HL-60 cells. Sci Rep. 2019;9:2224.
  • Chindamo G, Sapino S, Peira E, et al. Bone diseases: current approach and future perspective in drug delivery systems for bone targeted therapeutics. Nanomaterials. 2020;10(5):875.
  • Masouleh MP, Hosseini V, Pourhaghgouy M, et al. Calcium phosphate nanoparticles cytocompatibility versus cytotoxicity: a serendipitous paradox. Curr Pharm Des. 2017;23:1–22, 27.
  • Peng HH, Wu CY, Young D, et al. Physicochemical and biological properties of biomimetic mineralo-protein nanoparticles formed spontaneously in biological fluids. Small. 2013;9:2297–2307.
  • Liu Z, Xiao Y, Chen W, et al. Calcium phosphate nanoparticles primarily induce cell necrosis through lysosomal rupture: the origination of material cytotoxicity. J Mater Chem B. 2014;2:3480–3489.
  • Maleki Dizaj S, Barzegar-Jalali M, Zarrintan MH, et al. Calcium carbonate nanoparticles; potential in bone and tooth disorders. Pharm Sci. 2015;20:175–181.
  • Jeong MS, Cho HS, Park SJ, et al. Physicochemical characterization-based safety evaluation of nanocalcium. Food Chem Toxicol. 2013;62:308–317.
  • Tabei Y, Sugino S, Eguchi K, et al. Effect of calcium carbonate particle shape on phagocytosis and pro-inflammatory response in differentiated THP-1 macrophages. Biochem Biophys Res Commun. 2017;490:499–505.
  • Kim MK, Lee JA, Jo MR, et al. Cytotoxicity, uptake behaviors, and oral absorption of food grade calcium carbonate nanomaterials. Nanomaterials. 2015;5:1938–1954.
  • Jabbari N, Zarei L, Esmaeili Govarchin Galeh H, et al. Assessment of synergistic effect of combining hyperthermia with irradiation and calcium carbonate nanoparticles on proliferation of human breast adenocarcinoma cell line (MCF-7 cells). Artif Cells Nanomed Biotechnol. 2018;46(Suppl. 2):364–372.
  • Horie M, Nishio K, Kato H, et al. Evaluation of cellular influences caused by calcium carbonate nanoparticles. Chem Biol Interact. 2014;210:64–76.
  • Wu JH, Deng YL, Liu Q, et al. Induction of apoptosis and autophagy by calcifying nanoparticles in human bladder cancer cells. Tumour Biol. 2017;39:1010428317707688.
  • Jeong J, Kim JH, Sim JH, et al. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res. 2019;23:4.
  • Jing X, Xu P, Li Z, et al. Oxidative stress and apoptosis induced by hydroxyapatite nanoparticles in C6 cells. J Biomed Mater Res A. 2012;100:738–745.
  • Meena R, Kesari KK, Rani M, et al. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7). J Nanopart Res. 2012;14:712.
  • Sun Y, Chen Y, Ma X, et al. Mitochondria-targeted hydroxyapatite nanoparticles for selective growth inhibition of lung cancer in vitro and in vivo. ACS Appl Mater Interfaces. 2016;8:25680–25690.
  • Xu Z, Liu C, Wei J, et al. Effect of four types of hydroxyapatite nanoparticles with different nanocrystal morphologies and size on apoptosis in rat osteoblasts. J Appl Toxicol. 2012;32(6):429–435.
  • Jin Y, Liu X, Liu H, et al. Oxidative stress-induced apoptosis of osteoblastic MC3T3-E1 cells by hydroxyapatite nanoparticles through lysosomal and mitochondrial pathways. RSC Adv. 2017;7(21):13010–13018.
  • Turkez H, Yousef MI, Sonmez E, et al. Evaluation of cytotoxic, oxidative stress and genotoxic responses of hydroxyapatite nanoparticles on human blood cells. J Appl Toxicol. 2014;34:373–379.
  • Huang L, Sun X, Ouyang J. Shape-dependent toxicity and mineralization of hydroxyapatite nanoparticles in A7R5 aortic smooth muscle cells. Sci Rep. 2019;9:18979.
  • Ding T, Xue Y, Lu H, et al. Effect of particle size of hydroxyapatite nanoparticles on its biocompatibility. IEEE Trans Nanobiosci. 2012;11:336–340.
  • Chen Q, Xue Y, Sun J. Hepatotoxicity and liver injury induced by hydroxyapatite nanoparticles. J Appl Toxicol. 2014;34:1256–1264.
  • Epple M. Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater. 2018;77:1–14.
  • Guha N, Loomis D, Guyton KZ, et al. Carcinogenicity of welding, molybdenum trioxide, and indium tin oxide. Lancet Oncol. 2017;18:581–582.
  • Nagano K, Nishizawa T, Umeda Y, et al. Inhalation carcinogenicity and chronic toxicity of indium-tin oxide in rats and mice. J Occup Health. 2011;53:175–187.
  • Lison D, Laloy J, Corazzari I, et al. Sintered indium-tin-oxide (ITO) particles: a new pneumotoxic entity. Toxicol Sci. 2009;108:472–481.
  • Badding MA, Schwegler-Berry D, Park JH, et al. Sintered indium-tin oxide particles induce pro-inflammatory responses in vitro, in part through inflammasome activation. PLoS One. 2015;10:e0124368.
  • Tabei Y, Sonoda S, Nakajima Y, et al. In vitro evaluation of the cellular effect of indium tin oxide nanoparticles using the human lung adenocarcinoma A549 cells. Metallomics. 2015;7(5):816–827.
  • Gwinn WM, Qu W, Bousquet RW, et al. Macrophage solubilization and cytotoxicity of indium-containing particles as in vitro correlates to pulmonary toxicity in vivo. Toxicol Sci. 2015;144:17–26.
  • Tabei Y, Sonoda S, Nakajima Y, et al. Intracellular accumulation of indium ions released from nanoparticles induces oxidative stress, proinflammatory response and DNA damage. J Biochem. 2016;159:225–237.
  • Alkahtane A. Indium tin oxide nanoparticles-mediated DNA fragmentation and cell death by apoptosis in human lung epithelial cells. Toxicol Environ Chem. 2015;97:1–1098.
  • Liou SH, Chen YC, Liao HY, et al. Increased levels of oxidative stress biomarkers in metal oxides nanomaterial-handling workers. Biomarkers. 2016;21:600–606.
  • Liou SH, Wu WT, Liao HY, et al. Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles. J Hazard Mater. 2017;331:329–335.
  • Kumar A, Dhawan A. Genotoxic and carcinogenic potential of engineered nanoparticles: an update. Arch Toxicol. 2013;87:1833–1900.
  • Liu HH, Chen CY, Chen GI, et al. Relationship between indium exposure and oxidative damage in workers in indium tin oxide production plants. Int Arch Occup Environ Health. 2012;85:447–453.
  • Ahmed S, Kobayashi H, Afroz T, et al. Nitrative DNA damage in lung epithelial cells exposed to indium nanoparticles and indium ions. Sci Rep. 2020;10:10741.
  • Tabei Y, Sugino S, Nakajima Y, et al. Reactive oxygen species independent genotoxicity of indium tin oxide nanoparticles triggered by intracellular degradation. Food Chem Toxicol. 2018;118:264–271.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.