457
Views
19
CrossRef citations to date
0
Altmetric
Review Articles

Antioxidant action of vitamin E in vivo as assessed from its reaction products with multiple biological oxidants

&
Pages 352-363 | Received 24 Oct 2020, Accepted 14 Dec 2020, Published online: 11 Jan 2021

References

  • Sies H. Oxidative Stress: eustress and distress. Elsevier; 2020, Amsterdam.
  • Niki E. Oxidant-specific biomarkers of oxidative stress. Association with atherosclerosis and implication for antioxidant effects. Free Radic Biol Med. 2018;120:425–440.
  • Patel RP, McAndrew J, Sellak H, et al. Biological aspects of reactive nitrogen species. Biochim Biophys Acta. 1999;1411(2-3):385–400.
  • Shoieb SM, El-Ghiaty MA, Alqahtani MA, et al. Cytochrome P450-derived eicosanoids and inflammation in liver diseases. Prostaglandins Other Lipid Mediat. 2020;147:106400
  • Niki E. Antioxidant capacity: Which capacity and how to assess it? J Berry Res. 2011;1(4):169–176.
  • Brigelius-Flohe R. Metabolism of Vitamin E. In: Niki E, editor. Vitamin E. Chemistry and nutritional benefits. London, UK: Royal Society of Chemistry; 2019. p. 189–207.
  • Niki E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med. 2014;66:3–12.
  • Niki E. Tocopherylquinone and tocopherylhydroquinone. Redox Rep. 2007;12(5):204–210.
  • Luo J, Mills K, Le Cessie S, et al. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res Rev. 2020;57:100982.
  • Torquato P, Ripa O, Giusepponi D, et al. Analytical strategies to assess the functional metabolome of vitamin E. J Pharm Biomed Anal. 2016;124:399–412.
  • Niki E. ed. ‘Vitamin E. Chemistry and nutritional benefits. London, UK: Royal Society of Chemistry; 2019. p. 1–11.
  • Winterle J, Dulin D, Mill T. Products and stoichiometry of reaction of vitamin E with alkylperoxy radicals. J Org Chem. 1984;49(3):491–495.
  • Matsuo M, Matsumoto S, Iitaka Y, et al. Radical-scavenging reactions of vitamin E and its model compound, 2,2,5,7,8-pentamethylchroman-6-ol, in a tert-butylperoxyl radical-generating system. J Am Chem Soc. 1989;111(18):7179–7185.
  • Liebler DC, Burr JA, Philips L, et al. Gas chromatography-mass spectrometry analysis of vitamin E and its oxidation products. Anal Biochem. 1996;236(1):27–34.
  • Yamauchi R. Oxidation products of vitamin E with lipid-derived free radicals. In: Niki E, editor. Vitamin E. Chemistry and nutritional benefits. London, UK: Royal Society of Chemistry; 2019. p. 175–188.
  • Yamauchi R, Yagi Y, Kato K. Oxidation of alpha-tocopherol during the peroxidation of dilinoleoylphosphatidylcholine in liposomes. Biosci Biotechnol Biochem. 1996;60(4):616–620.
  • Terentis AC, Thomas SR, Burr JA, et al. Vitamin E oxidation in human atherosclerotic lesions. Circ Res. 2002;90(3):333–339.
  • Packer JE, Slater TF, Willson RL. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature. 1979;278(5706):737–738.
  • Niki E, Tsuchiya J, Tanimura R, et al. Regeneration of vitamin E from α-tocopheroxyl radical by glutathione and vitamin C. Chem Lett. 1982;11(6):789–792.
  • Bowry VW, Ingold KU, Stocker R. Vitamin E in human low-density lipoprotein. When and how this antioxidant becomes a pro-oxidant. Biochem J. 1992;288(2):341–344.
  • Frei B, Stocker R, Ames BN. Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci USA. 1988;85(24):9748–9752.
  • Sato K, Niki E, Shimasaki H. Free radical-mediated chain oxidation of low density lipoprotein and its synergistic inhibition by vitamin E and vitamin C. Arch Biochem Biophys. 1990;279(2):402–425.
  • Takahashi M, Tsuchiya J, Niki E, et al. Action of vitamin E as antioxidant in phospholipid liposomal membranes as studied by spin label technique. J Nutr Sci Vitaminol (Tokyo). 1988;34(1):25–34.
  • Pryor WA, Squadrito GL. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol. 1995;268(5 Pt 1):L699–L722.
  • Carballal S, Bartesaghi S, Radi R. Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite. Biochim Biophys Acta. 2014;1840(2):768–780.
  • Pryor WA, Prier DG, Church DF. Electron-spin resonance study of mainstream and sidestream cigarette smoke: nature of the free radicals in gas-phase smoke and in cigarette tar. Environ Health Perspect. 1983;47:345–355.
  • Nishikimi M, Machlin LJ. Oxidation of alpha-tocopherol model compound by superoxide anion. Arch Biochem Biophys. 1975;170(2):684–689.
  • Ha YL, Csallany AS. alpha-Tocopherol oxidation mediated by superoxide anion (O2-). II. Identification of the stable alpha-tocopherol oxidation products. Lipids. 1992;27(3):201–205.
  • Gotoh N, Niki E. Rates of interactions of superoxide with vitamin E, vitamin C and related compounds as measured by chemiluminescence. Biochim Biophys Acta. 1992;1115(3):201–207.
  • de Groot H, Hegi U, Sies H. Loss of alpha-tocopherol upon exposure to nitric oxide or the sydnonimine SIN-1. FEBS Lett. 1993;315(2):139–142.
  • Hogg N, Darley-Usmar VM, Wilson MT, et al. The oxidation of alpha-tocopherol in human low-density lipoprotein by the simultaneous generation of superoxide and nitric oxide. FEBS Lett. 1993;326(1-3):199–203.
  • Vatassery GT. Oxidation of vitamin E, vitamin C, and thiols in rat brain synaptosomes by peroxynitrite. Biochem Pharmacol. 1996;52(4):579–586.
  • Shi H, Noguchi N, Niki E. Comparative study on dynamics of antioxidative action of alpha-tocopheryl hydroquinone, ubiquinol, and alpha-tocopherol against lipid peroxidation. Free Radic Biol Med. 1999;27(3-4):334–346.
  • Hoglen NC, Waller SC, Sipes IG, et al. Reactions of peroxynitrite with gamma-tocopherol. Chem Res Toxicol. 1997;10(4):401–407.
  • Christen S, Woodall AA, Shigenaga MK, et al. gamma-Tocopherol traps mutagenic electrophiles such as NO(X) and complements alpha-tocopherol: physiological implications. Proc Natl Acad Sci USA. 1997;94(7):3217–3222.
  • Cooney RV, Harwood PJ, Franke AA, et al. Products of gamma-tocopherol reaction with NO2 and their formation in rat insulinoma (RINm5F) cells. Free Radic Biol Med. 1995;19(3):259–269.
  • Botti H, Trujillo M, Batthyány C, et al. Homolytic pathways drive peroxynitrite-dependent Trolox C oxidation. Chem Res Toxicol. 2004;17(10):1377–1384.
  • Eiserich JP, Cross CE, Jones AD, et al. Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification. J Biol Chem. 1996;271(32):19199–19208.
  • Ho H, Soldevilla J, Hook JM, et al. Oxidation of 2,2,7,8-tetramethyl-6-chromanol, the model compound of gamma-tocopherol, by hypochlorous acid. Redox Rep. 2000;5(1):60–62.
  • Nguyen Q, Southwell-Keely PT. Reaction of gamma-tocopherol with hypochlorous acid. Lipids. 2007;42(2):171–178.
  • Pattison DI, Hawkins CL, Davies MJ. Hypochlorous acid-mediated oxidation of lipid components and antioxidants present in low-density lipoproteins: absolute rate constants, product analysis, and computational modeling. Chem Res Toxicol. 2003;16(4):439–449.
  • Foote CS, Ching TY, Geller GG. Chemistry of singlet oxygen. XVIII. Rates of reaction and quenching of alpha-tocopherol and singlet oxygen. Photochem Photobiol. 1974;20(6):511–513.
  • Neely WC, Martin JM, Barker SA. Products and relative reaction rates of the oxidation of tocopherols with singlet molecular oxygen. Photochem Photobiol. 1988;48(4):423–428.
  • Mukai K, Ishikawa E, Ouchi A, et al. Measurements of singlet oxygen-quenching activity of vitamin E homologs and palm oil and soybean extracts in a micellar solution. Lipids. 2018;53(6):601–613.
  • Clough RL, Yee BG, Foote CS. Chemistry of Singlet Oxygen. 30. The unstable primary product of tocopherol photooxidation. J Am Chem Soc. 1979;101(3):683–686.
  • Yamauchi R, Matsushita S. Products formed by photosensitized oxidation of tocopherols. Agric Biol Chem. 1979;43:2151–2156.
  • Gruszka J, Pawlak A, Kruk J. Tocochromanols, plastoquinol, and other biological prenyllipids as singlet oxygen quenchers-determination of singlet oxygen quenching rate constants and oxidation products. Free Radic Biol Med. 2008;45(6):920–928.
  • Krol ES, Kramer-Stickland KA, Liebler DC. Photoprotective actions of topically applied vitamin E. Drug Metab Rev. 2000;32(3-4):413–420.
  • Kaiser S, Di Mascio P, Murphy ME, et al. Physical and chemical scavenging of singlet molecular oxygen by tocopherols. Arch Biochem Biophys. 1990;277(1):101–108.
  • Liebler DC, Matsumoto S, Iitaka Y, et al. Reactions of vitamin E and its model compound 2,2,5,7,8-pentamethylchroman-6-ol with ozone. Chem Res Toxicol. 1993;6(1):69–74.
  • Enami S, Hoffmann MR, Colussi AJ. How phenol and alpha-tocopherol react with ambient ozone at gas/liquid interfaces. J Phys Chem A. 2009;113(25):7002–7010.
  • Kadiiska MB, Hatch GE, Nyska A, et al. Biomarkers of Oxidative Stress Study IV: ozone exposure of rats and its effect on antioxidants in plasma and bronchoalveolar lavage fluid. Free Radic Biol Med. 2011;51(9):1636–1642.
  • Wiser J, Alexis NE, Jiang Q, et al. In vivo gamma-tocopherol supplementation decreases systemic oxidative stress and cytokine responses of human monocytes in normal and asthmatic subjects. Free Radic Biol Med. 2008;45(1):40–49.
  • Wood LG, Garg ML, Blake RJ, et al. Oxidized vitamin E and glutathione as markers of clinical status in asthma. Clin Nutr. 2008;27(4):579–586.
  • Palan PR, Woodall AL, Anderson PS, et al. Alpha-tocopherol and alpha-tocopheryl quinone levels in cervical intraepithelial neoplasia and cervical cancer. Am J Obstet Gynecol. 2004;190(5):1407–1410.
  • Vatassery GT, Smith WE, Quach HT. A liquid chromatographic method for the simultaneous determination of alpha-tocopherol and tocopherolquinone in human red blood cells and other biological samples where tocopherol is easily oxidized during sample treatment. Anal Biochem. 1993;214(2):426–430.
  • Jain SK, Wise R, Bocchini JJ. Vitamin E and vitamin E-quinone levels in red blood cells and plasma of newborn infants and their mothers. J Am Coll Nutr. 1996;15(1):44–48.
  • Jiang Q. Natural forms of vitamin E and metabolites-regulation of cancer cell death and underlying mechanisms. IUBMB Life. 2019;71(4):495–506.
  • Zheng L, Jin J, Shi L, Huang J, et al. Gamma tocopherol, its dimmers, and quinones: Past and future trends. Crit Rev Food Sci Nutr. 2020;60(22):3916–3930.
  • Hensley K, Williamson KS. HPLC-electrochemical detection of tocopherol products as indicators of reactive nitrogen intermediates. Methods Enzymol. 2005;396:171–182.
  • Leonard SW, Bruno RS, Paterson E, et al. 5-Nitro-gamma-tocopherol increases in human plasma exposed to cigarette smoke in vitro and in vivo. Free Radic Biol Med. 2003;35(12):1560–1567.
  • Pei R, Mah E, Leonard SW, et al. α-Tocopherol supplementation reduces 5-nitro-γ-tocopherol accumulation by decreasing γ-tocopherol in young adult smokers. Free Radic Res. 2015;49(9):1114–1121.
  • Pacht ER, Kaseki H, Mohammed JR, et al. Deficiency of vitamin E in the alveolar fluid of cigarette smokers. Influence on alveolar macrophage cytotoxicity. J Clin Invest. 1986;77(3):789–796.
  • Sundl I, Meinitzer A, Maritschnegg M, Roob JM, Tiran B, Verdino T, Knes O, Winklhofer-Roob BM. Formation of 5-nitro-gamma-tocopherol in smokers and non-smokers after mixed tocopherol supplementation. Akt Ernähr Med. 2007;32(03):4–11.
  • Mottier P, Gremaud E, Guy PA, et al. Comparison of gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry methods to quantify alpha-tocopherol and alpha-tocopherolquinone levels in human plasma. Anal Biochem. 2002;301(1):128–135.
  • Shichiri M, Harada N, Ishida N, et al. Oxidative stress is involved in fatigue induced by overnight deskwork as assessed by increase in plasma tocopherylhydroqinone and hydroxycholesterol. Biol Psychol. 2013;94(3):527–533.
  • Suarna C, Dean RT, May J, et al. Human atherosclerotic plaque contains both oxidized lipids and relatively large amounts of alpha-tocopherol and ascorbate. Arterioscler Thromb Vasc Biol. 1995;15(10):1616–1624.
  • Niu X, Zammit V, Upston JM, et al. Coexistence of oxidized lipids and alpha-tocopherol in all lipoprotein density fractions isolated from advanced human atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 1999;19(7):1708–1718.
  • Murphy ME, Kolvenbach R, Aleksis M, et al. Antioxidant depletion in aortic crossclamping ischemia: increase of the plasma alpha-tocopheryl quinone/alpha-tocopherol ratio. Free Radic Biol Med. 1992;13(2):95–100.
  • Torquato P, Bartolini D, Giusepponi D, et al. Increased plasma levels of the lipoperoxyl radical-derived vitamin E metabolite α-tocopheryl quinone are an early indicator of lipotoxicity in fatty liver subjects. Free Radic Biol Med. 2019;131:115–125.
  • Giusepponi D, Galarini R, Barola C, et al. LC-MS/MS assay for the simultaneous determination of tocopherols, polyunsaturated fatty acids and their metabolites in human plasma and serum. Free Radic Biol Med. 2019;144:134–143.
  • Mangialasche F, Xu W, Kivipelto M, et al. AddNeuroMed Consortium. Tocopherols and tocotrienols plasma levels are associated with cognitive impairment. Neurobiol Aging. 2012;33(10):2282–2290.
  • Mangialasche F, Westman E, Kivipelto M, AddNeuroMed consortium, et al. Classification and prediction of clinical diagnosis of Alzheimer's disease based on MRI and plasma measures of α-/γ-tocotrienols and γ-tocopherol. J Intern Med. 2013a;273(6):602–621.
  • Mangialasche F, Solomon A, Kåreholt I, et al. Serum levels of vitamin E forms and risk of cognitive impairment in a Finnish cohort of older adults. Exp Gerontol. 2013b;48(12):1428–1435.
  • Casati M, Boccardi V, Ferri E, et al. Vitamin E and Alzheimer's disease: The mediating role of cellular aging. Aging Clin Exp Res. 2020;32(3):459–464.
  • Ballard KD, Mah E, Guo Y, Bruno RS, et al. Single low-density lipoprotein apheresis does not improve vascular endothelial function in chronically treated hypercholesterolemic patients. Int J Vasc Med. 2016;2016:1–7.
  • Morton LW, Ward NC, Croft KD, et al. Evidence for the nitration of gamma-tocopherol in vivo: 5-nitro-gamma-tocopherol is elevated in the plasma of subjects with coronary heart disease. Biochem J. 2002;364(Pt 3):625–628.
  • Sumida Y, Niki E, Naito Y, et al. Involvement of free radicals and oxidative stress in NAFLD/NASH. Free Radic Res. 2013;47(11):869–880.
  • Podszun MC, Alawad AS, Lingala S, et al. Vitamin E treatment in NAFLD patients demonstrates that oxidative stress drives steatosis through upregulation of de-novo lipogenesis. Redox Biol. 2020;37:101710.
  • Feldstein AE, Lopez R, Tamimi TA, et al. Mass spectrometric profiling of oxidized lipid products in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J Lipid Res. 2010;51(10):3046–3054.
  • Zein CO, Lopez R, Fu X, Kirwan JP, Yerian LM, McCullough AJ, Hazen SL, Feldstein AE. Pentoxifylline decreases oxidized lipid products in nonalcoholic steatohepatitis: new evidence on the potential therapeutic mechanism. Hepatology. 2012;56(4):1291–1299.
  • Boccardi V, Baroni M, Mangialasche F, et al. Vitamin E family: Role in the pathogenesis and treatment of Alzheimer's disease. Alzheimers Dement (N Y)). 2016;2(3):182–191.
  • Ravaglia G, Forti P, Lucicesare A, et al. Plasma tocopherols and risk of cognitive impairment in an elderly Italian cohort. Am J Clin Nutr. 2008;87(5):1306–1313. Supplemental data in E-Table 1., was used.
  • Tohgi H, Abe T, Nakanishi M, et al. Concentrations of α-tocopherol and its quinone derivative in cerebrospinal fluid from patients with vascular dementia of the Binswanger type and Alzheimer type dementia. Neurosci Lett. 1994;174(1):73–76.
  • Tohgi H, Abe T, Saheki M, et al. Reduced and oxidized forms of glutathione and alpha-tocopherol in the cerebrospinal fluid of Parkinsonian patients: comparison between before and after L-dopa treatment. Neurosci Lett. 1995;184(1):21–24.
  • Tohgi H, Abe T, Saheki M, et al. alpha-Tocopherol quinone level is remarkably low in the cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Neurosci Lett. 1996;207(1):5–8.
  • Jiménez-Jiménez FJ, de Bustos F, Molina JA, et al. Cerebrospinal fluid levels of alpha-tocopherol (vitamin E) in Alzheimer's disease. J Neural Transm (Vienna)). 1997;104(6-7):703–710.
  • Williamson KS, Gabbita SP, Mou S, et al. The nitration product 5-nitro-gamma-tocopherol is increased in the Alzheimer brain. Nitric Oxide. 2002;6(2):221–227.
  • Collins AR, Cadet J, Möller L, et al. Are we sure we know how to measure 8-oxo-7,8-dihydroguanine in DNA from human cells? Arch Biochem Biophys. 2004;423(1):57–65.
  • Csallany AS, Draper HH, Shah SN. Conversion of d-alpha-tocopherol-C14 to tocopheryl-p-quinone in vivo. Arch Biochem Biophys. 1962;98:142–145.
  • Chow CK, Draper HH, Csallany AS, et al. The metabolism of C(14)-alpha-tocopheryl quinone and C(14)-alpha-tocopheryl hydroquinone. Lipids. 1967;2(5):390–396.
  • Kohar I, Baca M, Suarna C, et al. Is alpha-tocopherol a reservoir for alpha-tocopheryl hydroquinone? Free Radic Biol Med. 1995;19(2):197–207.
  • Shichiri M, Yoshida Y, Ishida N, et al. α-Tocopherol suppresses lipid peroxidation and behavioral and cognitive impairments in the Ts65Dn mouse model of Down syndrome. Free Radic Biol Med. 2011;50(12):1801–1811.
  • Niki E, Saito T, Kawakami A, et al. Inhibition of oxidation of methyl linoleate in solution by vitamin E and vitamin C. J Biol Chem. 1984;259(7):4177–4182.
  • Itoh N, Cao J, Chen ZH, et al. Advantages and limitation of BODIPY as a probe for the evaluation of lipid peroxidation and its inhibition by antioxidants in plasma. Bioorg Med Chem Lett. 2007;17(7):2059–2063.
  • Igarashi O, Yonekawa Y, Fujiyama-Fujihara Y. Synergistic action of vitamin E and vitamin C in vivo using a new mutant of Wistar-strain rats, ODS, unable to synthesize vitamin C. J Nutr Sci Vitaminol (Tokyo). 1991;37(4):359–369.
  • Bruno RS, Traber MG. Vitamin E biokinetics, oxidative stress and cigarette smoking. Pathophysiology. 2006;13(3):143–149.
  • Hensley K, Benaksas EJ, Bolli R, et al. New perspectives on vitamin E: gamma-tocopherol and carboxyelthylhydroxychroman metabolites in biology and medicine. Free Radic Biol Med. 2004;36(1):1–15.
  • Burton GW, Ingold KU. Autoxidation of biological molecules. 1. Antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J Am Chem Soc. 1981;103(21):6472–6477.
  • Goss SP, Hogg N, Kalyanaraman B. The effect of alpha-tocopherol on the nitration of gamma-tocopherol by peroxynitrite. Arch Biochem Biophys. 1999;363(2):333–340.
  • Niki E, Tsuchiya J, Yoshikawa Y, et al. Oxidation of lipids. XIII. Antioxidant activities of α-, β-, γ-, and δ-tocopherols. BCSJ. 1986;59(2):497–501.
  • Umeno A, Morita M, Yoshida Y, et al. Isomer distribution of hydroxyoctadecadienoates (HODE) and hydroxyeicosatetraenoates (HETE) produced in the plasma oxidation mediated by peroxyl radical, peroxynitrite, hypochlorite, 15-lipoxygenase, and singlet oxygen. Arch Biochem Biophys. 2017;635:96–101.
  • Morita M, Naito Y, Yoshikawa T, et al. Plasma lipid oxidation induced by peroxynitrite, hypochlorite, lipoxygenase and peroxyl radicals and its inhibition by antioxidants as assessed by diphenyl-1-pyrenylphosphine. Redox Biol. 2016;8:127–135.
  • Morita M, Naito Y, Itoh Y, et al. Comparative study on the plasma lipid oxidation induced by peroxynitrite and peroxyl radicals and its inhibition by antioxidants. Free Radic Res. 2019;53(11-12):1101–1113.
  • Cornwell DG, Kim S, Mazzer PA, et al. Electrophile tocopheryl quinones in apoptosis and mutagenesis: thermochemolysis of thiol adducts with proteins and in cells. Lipids. 2003;38(9):973–979.
  • Ogawa Y, Saito Y, Nishio K, et al. Gamma-tocopheryl quinone, not alpha-tocopheryl quinone, induces adaptive response through up-regulation of cellular glutathione and cysteine availability via activation of ATF4. Free Radic Res. 2008;42(7):674–687.
  • Freeman BA, O'Donnell VB, Schopfer FJ. The discovery of nitro-fatty acids as products of metabolic and inflammatory reactions and mediators of adaptive cell signaling. Nitric Oxide. 2018;77:106–111.
  • Tsikas D, Zoerner AA, Jordan J. Oxidized and nitrated oleic acid in biological systems: analysis by GC-MS/MS and LC-MS/MS, and biological significance. Biochim Biophys Acta. 2011;1811(11):694–705.
  • Yermilov V, Rubio J, Becchi M, et al. Formation of 8-nitroguanine by the reaction of guanine with peroxynitrite in vitro. Carcinogenesis. 1995;16(9):2045–2050.
  • Hawkins CL, Davies MJ. Detection, identification, and quantification of oxidative protein modifications. J Biol Chem. 2019;294(51):19683–19708.
  • Bartesaghi S, Radi R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 2018;14:618–625.
  • Pfeiffer S, Mayer B. Lack of tyrosine nitration by peroxynitrite generated at physiological pH. J Biol Chem. 1998;273(42):27280–27285.
  • Gaut JP, Byun J, Tran HD, et al. Artifact-free quantification of free 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine in human plasma by electron capture-negative chemical ionization gas chromatography mass spectrometry and liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Biochem. 2002;300(2):252–259.
  • Tohgi H, Abe T, Yamazaki K, et al. Alterations of 3-nitrotyrosine concentration in the cerebrospinal fluid during aging and in patients with Alzheimer's disease. Neurosci Lett. 1999;269(1):52–54.
  • Tohgi H, Abe T, Yamazaki K, et al. Remarkable increase in cerebrospinal fluid 3-nitrotyrosine in patients with sporadic amyotrophic lateral sclerosis. Ann Neurol. 1999;46(1):129–131.
  • Sanyal AJ, Campbell-Sargent C, Mirshahi F, et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology. 2001;120(5):1183–1192.
  • Villaño D, Vilaplana C, Medina S, et al. Effect of elite physical exercise by triathletes on seven catabolites of DNA oxidation. Free Radic Res. 2015;49(8):973–983.
  • Zheng L, Nukuna B, Brennan ML, et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest. 2004;114(4):529–541.
  • Martinez M, Cuker A, Mills A, et al. Nitrated fibrinogen is a biomarker of oxidative stress in venous thromboembolism. Free Radic Biol Med. 2012;53(2):230–236.
  • Gedik CM, Collins A, ESCODD (European Standards Committee on Oxidative DNA Damage) Establishing the background level of base oxidation in human lymphocyte DNA: results of an interlaboratory validation study. Faseb J. 2005;19(1):82–84.
  • Pollok D, Melchert HU. Determination of alpha-tocopherolquinone in human serum samples by liquid chromatography with fluorescence detection and on-line post-column derivatization. J Chromatogr A. 2004;1056(1-2):257–262.
  • Taylor L, Krueger N, Malysheva O, et al. ω-Hydroxylation of α-tocopheryl quinone reveals a dual function for cytochrome P450-4F2 in vitamin E metabolism. Bioorg Med Chem. 2018;26(20):5555–5565.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.