4,234
Views
17
CrossRef citations to date
0
Altmetric
Review Articles

G6PD deficiency, redox homeostasis, and viral infections: implications for SARS-CoV-2 (COVID-19)

, ORCID Icon, ORCID Icon, &
Pages 364-374 | Received 05 Nov 2020, Accepted 10 Dec 2020, Published online: 06 Jan 2021

References

  • World Health Organization: Coronavirus disease (COVID-19) Weekly Epidemiological Update and Weekly Operational Update. 2020.
  • Tal S, Spectre G, Kornowski R, et al. Venous thromboembolism complicated with COVID-19: what do we know so far? Acta Haematol. 2020;143(5):417–424.
  • Beltran-Garcia J, Osca-Verdegal R, Pallardo FV, et al. Oxidative stress and inflammation in COVID-19-associated sepsis: the potential role of anti-oxidant therapy in avoiding disease progression. Antioxidants (Basel). 2020;9(10):936.
  • Iwasaki M, Saito J, Zhao H, et al. Inflammation triggered by SARS-CoV-2 and ACE2 augment drives multiple organ failure of severe COVID-19. Molecul Mech Implic Inflamm. 2020:1–22.
  • de la Rica R, Borges M, Gonzalez-Freire M. COVID-19: In the Eye of the Cytokine Storm. Front Immunol. 2020;11:558898.
  • Leisman DE, Ronner L, Pinotti R, et al. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir Med. 2020;8(12):1233–1244.
  • De Virgiliis F, Di Giovanni S. Lung innervation in the eye of a cytokine storm: neuroimmune interactions and COVID-19. Nat Rev Neurol. 2020;16(11):645–652.
  • Kellner M, Noonepalle S, Lu Q, et al. ROS signaling in the pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). Adv Exp Med Biol. 2017;967:105–137.
  • Wu YH, Tseng CP, Cheng ML, et al. Glucose-6-phosphate dehydrogenase deficiency enhances human coronavirus 229E infection. J Infect Dis. 2008;197(6):812–816.
  • Wu YH, Chiu DT, Lin HR, et al. Glucose-6-phosphate dehydrogenase enhances antiviral response through downregulation of NADPH sensor HSCARG and upregulation of NF-κB signaling. Viruses. 2015;7(12):6689–6706.
  • Lin HR, Wu YH, Yen WC, et al. Diminished COX-2/PGE2-mediated antiviral response due to impaired NOX/MAPK signaling in G6PD-knockdown lung epithelial cells. PLoS One. 2016;11(4):e0153462.
  • BaHammam AS, Bindayna KM, Joji RM, et al. Outcomes of COVID-19 in the Eastern Mediterranean Region in the first 4 months of the pandemic. Saudi Med J. 2020;41(9):907–915.
  • Iftimie S, Lopez-Azcona AF, Vicente-Miralles M, et al. Risk factors associated with mortality in hospitalized patients with SARS-CoV-2 infection. A prospective, longitudinal, unicenter study in Reus. PLoS One. 2020;15(9):e0234452.
  • Jamerson BD, Haryadi TH, Bohannon A. Glucose-6-phosphate dehydrogenase deficiency: an actionable risk factor for patients with COVID-19? Arch Med Res. 2020;51(7):743–744.
  • Wu YH, Lee YH, Shih HY, et al. Glucose-6-phosphate dehydrogenase is indispensable in embryonic development by modulation of epithelial-mesenchymal transition via the NOX/Smad3/miR-200b axis. Cell Death Dis. 2018;9(1):10.
  • Yang HC, Yu H, Liu YC, et al. IDH-1 deficiency induces growth defects and metabolic alterations in GSPD-1-deficient Caenorhabditis elegans. J Mol Med (Berl)). 2019;97(3):385–396.
  • Yang HC, Cheng ML, Ho HY, et al. The microbicidal and cytoregulatory roles of NADPH oxidases. Microbes Infect. 2011;13(2):109–120.
  • Davies KJ. The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life. 1999;48(1):41–47.
  • Burdon RH. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med. 1995;18(4):775–794.
  • Liochev SI. Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med. 2013;60:1–4.
  • Vina J, Borras C, Abdelaziz KM, et al. The free radical theory of aging revisited: the cell signaling disruption theory of aging. Antioxid Redox Signal. 2013;19(8):779–787.
  • Beutler E. G6PD deficiency. Blood. 1994;84(11):3613–3636.
  • Gomez-Manzo S, Marcial-Quino J, Vanoye-Carlo A, et al. Glucose-6-phosphate dehydrogenase: update and analysis of new mutations around the world. Int J Mol Sci. 2016;17(12):2069.
  • La Vieille S, Lefebvre DE, Khalid AF, et al. Dietary restrictions for people with glucose-6-phosphate dehydrogenase deficiency. Nutr Rev. 2019;77(2):96–106.
  • Abdel Hakeem GL, Abdel Naeem EA, Swelam SH, et al. Detection of occult acute kidney injury in glucose-6-phosphate dehydrogenase deficiency anemia. Mediterr J Hematol Infect Dis. 2016;8(1):e2016038.
  • Mason PJ, Bautista JM, Gilsanz F. G6PD deficiency: the genotype-phenotype association. Blood Rev. 2007;21(5):267–283.
  • Ho HY, Cheng ML, Lu FJ, et al. Enhanced oxidative stress and accelerated cellular senescence in glucose-6-phosphate dehydrogenase (G6PD)-deficient human fibroblasts. Free Radic Biol Med. 2000;29(2):156–169.
  • Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL, et al. The redox role of G6PD in cell growth. Cell Death, and Cancer. Cells. 2019;8(9):1055.
  • Cheng ML, Ho HY, Liang CM, et al. Cellular glucose-6-phosphate dehydrogenase (G6PD) status modulates the effects of nitric oxide (NO) on human foreskin fibroblasts. FEBS Lett. 2000;475(3):257–262.
  • Gao LP, Cheng ML, Chou HJ, et al. Ineffective GSH regeneration enhances G6PD-knockdown Hep G2 cell sensitivity to diamide-induced oxidative damage. Free Radic Biol Med. 2009;47(5):529–535.
  • Lin CJ, Ho HY, Cheng ML, et al. Impaired dephosphorylation renders G6PD-knockdown HepG2 cells more susceptible to H(2)O(2)-induced apoptosis. Free Radic Biol Med. 2010;49(3):361–373.
  • Zekavat OR, Makarem A, Bahrami R, et al. Relationship of glucose-6-phosphate dehydrogenase deficiency and neonatal sepsis: a single-center investigation on the major cause of neonatal morbidity and mortality. Pediatric Health Med Ther. 2019;10:33–37.
  • Rostami-Far Z, Ghadiri K, Rostami-Far M, et al. B. Glucose-6-phosphate dehydrogenase deficiency (G6PD) as a risk factor of male neonatal sepsis. J Med Life. 2016;9(1):34–38.
  • Christensen RD, Yaish HM, Wiedmeier SE, et al. Neonatal death suspected to be from sepsis was found to be kernicterus with G6PD deficiency. Pediatrics. 2013;132(6):e1694–e1698.
  • Liao SL, Lai SH, Tsai MH, et al. Cytokine responses of TNF-α, IL-6, and IL-10 in G6PD-deficient infants. Pediatr Hematol Oncol. 2014;31(1):87–94.
  • Wilmanski J, Siddiqi M, Deitch EA, et al. Augmented IL-10 production and redox-dependent signaling pathways in glucose-6-phosphate dehydrogenase-deficient mouse peritoneal macrophages. J Leukoc Biol. 2005;78(1):85–94.
  • Liese AM, Siddiqi MQ, Siegel JH, et al. Attenuated monocyte IL-10 production in glucose-6-phosphate dehydrogenase-deficient trauma patients. Shock. 2002;18(1):18–23.
  • Peiro C, Romacho T, Azcutia V, et al. Inflammation, glucose, and vascular cell damage: the role of the pentose phosphate pathway. Cardiovasc Diabetol. 2016;15:82.
  • Yang HC, Cheng ML, Hua YS, et al. Glucose 6-phosphate dehydrogenase knockdown enhances IL-8 expression in HepG2 cells via oxidative stress and NF-κB signaling pathway. J Inflamm (Lond)). 2015;12:34.
  • Sanna F, Bonatesta RR, Frongia B, et al. Production of inflammatory molecules in peripheral blood mononuclear cells from severely glucose-6-phosphate dehydrogenase-deficient subjects. J Vasc Res. 2007;44(4):253–263.
  • van Bruggen R, Bautista JM, Petropoulou T, et al. Deletion of leucine 61 in glucose-6-phosphate dehydrogenase leads to chronic nonspherocytic anemia, granulocyte dysfunction, and increased susceptibility to infections. Blood. 2002;100(3):1026–1030.
  • Tsai KJ, Hung IJ, Chow CK, et al. Impaired production of nitric oxide, superoxide, and hydrogen peroxide in glucose 6-phosphate-dehydrogenase-deficient granulocytes. FEBS Lett. 1998;436(3):411–414.
  • Ham M, Lee JW, Choi AH, et al. Macrophage glucose-6-phosphate dehydrogenase stimulates proinflammatory responses with oxidative stress. Mol Cell Biol. 2013;33(12):2425–2435.
  • Chen KK, Minakuchi M, Wuputra K, Ku CC, et al. Redox control in the pathophysiology of influenza virus infection. BMC Microbiol. 2020;20(1):214.
  • Colado Simao AN, Victorino VJ, Morimoto HK, et al. Redox-driven events in the human immunodeficiency virus type 1 (HIV-1) infection and their clinical implications. Curr HIV Res. 2015;13(2):143–150.
  • Garofalo RP, Kolli D, Casola A. Respiratory syncytial virus infection: mechanisms of redox control and novel therapeutic opportunities. Antioxid Redox Signal. 2013;18(2):186–217.
  • Baker DH, Wood RJ. Cellular antioxidant status and human immunodeficiency virus replication. Nutr Rev. 1992;50(1):15–18.
  • Louboutin JP, Strayer D. Role of oxidative stress in HIV-1-associated neurocognitive disorder and protection by gene delivery of antioxidant enzymes. Antioxidants (Basel)). 2014;3(4):770–797.
  • Soto ME, Guarner-Lans V, Soria-Castro E, et al. I. Is antioxidant therapy a useful complementary measure for Covid-19 treatment? An algorithm for its application. Medicina (Kaunas). 2020;56(8):386.
  • Uchide N, Toyoda H. Antioxidant therapy as a potential approach to severe influenza-associated complications. Molecules. 2011;16(3):2032–2052.
  • Staal FJ, Ela SW, Roederer M, et al. Glutathione deficiency and human immunodeficiency virus infection. Lancet. 1992;339(8798):909–912.
  • Verma S, Molina Y, Lo YY, et al. In vitro effects of selenium deficiency on West Nile virus replication and cytopathogenicity. Virol J. 2008;5:66.
  • Aubry M, Laughhunn A, Santa Maria F, et al. Pathogen inactivation of Dengue virus in red blood cells using amustaline and glutathione. Transfusion. 2017;57(12):2888–2896.
  • Laughhunn A, Huang YS, Vanlandingham DL, et al. Inactivation of chikungunya virus in blood components treated with amotosalen/ultraviolet A light or amustaline/glutathione. Transfusion. 2018;58(3):748–757.
  • De Flora S, Grassi C, Carati L. Attenuation of influenza-like symptomatology and improvement of cell-mediated immunity with long-term N-acetylcysteine treatment. Eur Respir J. 1997;10(7):1535–1541.
  • Ibrahim H, Perl A, Smith D, et al. Therapeutic blockade of inflammation in severe COVID-19 infection with intravenous N-acetylcysteine. Clin Immunol. 2020;219:108544.
  • Beck MA, Kolbeck PC, Rohr LH, et al. Benign human enterovirus becomes virulent in selenium-deficient mice. J Med Virol. 1994;43(2):166–170.
  • Beck MA, Kolbeck PC, Shi Q, et al. Increased virulence of a human enterovirus (coxsackievirus B3) in selenium-deficient mice. J Infect Dis. 1994;170(2):351–357.
  • Herzenberg LA, De Rosa SC, Dubs JG, et al. Glutathione deficiency is associated with impaired survival in HIV disease. Proc Natl Acad Sci USA. 1997;94(5):1967–1972.
  • Pauling L. Vitamin C and common cold. JAMA. 1971;216(2):332.
  • Pullar JM, Carr AC, Vissers MCM. The roles of vitamin C in skin health. Nutrients. 2017;9(8):866.
  • Ang A, Pullar JM, Currie MJ, et al. Vitamin C and immune cell function in inflammation and cancer. Biochem Soc Trans. 2018;46(5):1147–1159.
  • Vissers MCM, Das AB. Potential mechanisms of action for vitamin C in cancer: reviewing the evidence. Front Physiol. 2018;9:809.
  • Wohlrab C, Kuiper C, Vissers MC, et al. Ascorbate modulates the hypoxic pathway by increasing intracellular activity of the HIF hydroxylases in renal cell carcinoma cells. Hypoxia (Auckl)). 2019;7:17–31.
  • Ponec M, Weerheim A, Kempenaar J, et al. The formation of competent barrier lipids in reconstructed human epidermis requires the presence of vitamin C. J Invest Dermatol. 1997;109(3):348–355.
  • Mohammed BM, Fisher BJ, Kraskauskas D, et al. Vitamin C promotes wound healing through novel pleiotropic mechanisms. Int Wound J. 2016;13(4):572–584.
  • Johnston CS, Huang SN. Effect of ascorbic acid nutriture on blood histamine and neutrophil chemotaxis in guinea pigs. J Nutr. 1991;121(1):126–130.
  • Goldschmidt MC, Masin WJ, Brown LR, et al. The effect of ascorbic acid deficiency on leukocyte phagocytosis and killing of actinomyces viscosus. Int J Vitam Nutr Res. 1988;58(3):326–334.
  • Vissers MCM, Wilkie RP. Ascorbate deficiency results in impaired neutrophil apoptosis and clearance and is associated with up-regulation of hypoxia-inducible factor 1α. J Leukoc Biol. 2007;81(5):1236–1244.
  • Mohammed BM, Fisher BJ, Kraskauskas D, Farkas D, et al. Vitamin C: a novel regulator of neutrophil extracellular trap formation. Nutrients. 2013;5(8):3131–3151.
  • Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7(2):156–167.
  • Ran L, Zhao W, Wang J, et al. Extra dose of vitamin C based on a daily supplementation shortens the common cold: a meta-analysis of 9 randomized controlled trials. Biomed Res Int. 2018;2018:1837634.
  • Boretti A, Banik BK. Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome. PharmaNutrition. 2020;12:100190.
  • Corpe CP, Eck P, Wang J, et al. Intestinal dehydroascorbic acid (DHA) transport mediated by the facilitative sugar transporters, GLUT2 and GLUT8. J Biol Chem. 2013;288(13):9092–9101.
  • Baladia E, Pizarro AB, Ortiz-Munoz L, et al. Vitamin C for COVID-19: A living systematic review. Medwave. 2020;20(6):e7978.
  • Caruso AA, Del Prete A, Lazzarino AI. Hydrogen peroxide and viral infections: a literature review with research hypothesis definition in relation to the current covid-19 pandemic. Med Hypotheses. 2020;144:109910.
  • Kampf G, Todt D, Pfaender S, et al. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020;104(3):246–251.
  • Yamasaki H. Blood nitrate and nitrite modulating nitric oxide bioavailability: Potential therapeutic functions in COVID-19. Nitric Oxide. 2020;103:29–30.
  • Ignarro LJ. Inhaled NO and COVID-19. Br J Pharmacol. 2020;177(16):3848–3849.
  • Sobko T, Marcus C, Govoni M, et al. Dietary nitrate in Japanese traditional foods lowers diastolic blood pressure in healthy volunteers. Nitric Oxide. 2010;22(2):136–140.
  • Guo L, Zhang Z, Green K, et al. Suppression of interleukin-1 beta-induced nitric oxide production in RINm5F cells by inhibition of glucose-6-phosphate dehydrogenase. Biochemistry. 2002;41(50):14726–14733.
  • Leopold JA, Cap A, Scribner AW, et al. Glucose-6-phosphate dehydrogenase deficiency promotes endothelial oxidant stress and decreases endothelial nitric oxide bioavailability. Faseb J. 2001;15(10):1771–1773.
  • Parsanathan R, Jain SK. Glucose-6-phosphate dehydrogenase deficiency increases cell adhesion molecules and activates human monocyte-endothelial cell adhesion: Protective role of l-cysteine. Arch Biochem Biophys. 2019;663:11–21.
  • García-Nogales P, Almeida A, Bolaños JP. Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection. J Biol Chem. 2003;278(2):864–874.
  • Ho HY, Cheng ML, Weng SF, et al. Glucose-6-phosphate dehydrogenase deficiency enhances enterovirus 71 infection. J Gen Virol. 2008;89(Pt 9):2080–2089.
  • Chao YC, Huang CS, Lee CN, et al. Higher infection of dengue virus serotype 2 in human monocytes of patients with G6PD deficiency. PLoS One. 2008;3(2):e1557.
  • Naumenko V, Turk M, Jenne CN, et al. Neutrophils in viral infection. Cell Tissue Res. 2018;371(3):505–516.
  • Barr FD, Ochsenbauer C, Wira CR, et al. Neutrophil extracellular traps prevent HIV infection in the female genital tract. Mucosal Immunol. 2018;11(5):1420–1428.
  • Hiroki CH, Toller-Kawahisa JE, Fumagalli MJ, et al. Neutrophil extracellular traps effectively control acute chikungunya virus infection. Front Immunol. 2019;10:3108.
  • Sivanandham R, Brocca-Cofano E, Krampe N, et al. Neutrophil extracellular trap production contributes to pathogenesis in SIV-infected nonhuman primates. J Clin Invest. 2018;128(11):5178–5183.
  • Souza PSS, Barbosa LV, Diniz LFA, et al. Neutrophil extracellular traps possess anti-human respiratory syncytial virus activity: Possible interaction with the viral F protein. Virus Res. 2018;251:68–77.
  • Twaddell SH, Baines KJ, Grainge C, et al. The emerging role of neutrophil extracellular traps in respiratory disease. Chest. 2019;156(4):774–782.
  • Azevedo EP, Rochael NC, Guimaraes-Costa AB, et al. A metabolic shift toward pentose phosphate pathway is necessary for amyloid fibril- and phorbol 12-myristate 13-acetate-induced neutrophil extracellular trap (NET) formation. J Biol Chem. 2015;290(36):22174–22183.
  • Cheng ML, Ho HY, Lin HY, et al. Effective NET formation in neutrophils from individuals with G6PD Taiwan-Hakka is associated with enhanced NADP(+) biosynthesis. Free Radic Res. 2013;47(9):699–709.
  • Siler U, Romao S, Tejera E, et al. Severe glucose-6-phosphate dehydrogenase deficiency leads to susceptibility to infection and absent NETosis. J Allergy Clin Immunol. 2017;139(1):212–219 e3.
  • Veras FP, Pontelli MC, Silva CM, et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med. 2020;217(12):e20201129.
  • Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652.
  • Hidalgo A. A NET-thrombosis axis in COVID-19. Blood. 2020;136(10):1118–1119.
  • Makatsariya A, Slukhanchuk E, Bitsadze V, et al. COVID-19, neutrophil extracellular traps and vascular complications in obstetric practice. J Perinat Med. 2020;48(9):985–994.
  • Middleton EA, He XY, Denorme F, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136(10):1169–1179.
  • Schonrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv Biol Regul. 2020;77:100741.
  • Thierry AR, Roch B. Neutrophil extracellular traps and by-products play a key role in COVID-19: pathogenesis, risk factors, and therapy. J Clin Med. 2020;9(9):2942.
  • Yaqinuddin A, Kashir J. Novel therapeutic targets for SARS-CoV-2-induced acute lung injury: Targeting a potential IL-1β/neutrophil extracellular traps feedback loop. Med Hypotheses. 2020;143:109906.
  • Antushevich H. Interplays between inflammasomes and viruses, bacteria (pathogenic and probiotic), yeasts and parasites. Immunol Lett. 2020;228:1–14.
  • Zhao C, Zhao W. NLRP3 inflammasome-A key player in antiviral responses. Front Immunol. 2020;11:211.
  • Zheng M, Williams EP, Malireddi RKS, et al. Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via caspase-8/RIPK3 during coronavirus infection. J Biol Chem. 2020;295(41):14040–14052.
  • Samir P, Malireddi RKS, Kanneganti TD. The PANoptosome: a deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol. 2020;10:238.
  • Ratajczak MZ, Kucia M. SARS-CoV-2 infection and overactivation of Nlrp3 inflammasome as a trigger of cytokine "storm" and risk factor for damage of hematopoietic stem cells. Leukemia. 2020;34(7):1726–1729.
  • van den Berg DF. Te Velde AA. Severe COVID. NLRP3 Inflammasome Dysregulated. Front Immunol. 2020;1911:1580.
  • Yen WC, Wu YH, Wu CC, et al. Impaired inflammasome activation and bacterial clearance in G6PD deficiency due to defective NOX/p38 MAPK/AP-1 redox signaling. Redox Biol. 2020;28:101363.
  • Elhabyan A, Elyaacoub S, Sanad E, et al. The role of host genetics in susceptibility to severe viral infections in humans and insights into host genetics of severe COVID-19: A systematic review. Virus Res. 2020;289:198163.
  • Fauci AS, Lane HC, Redfield RR. Covid-19 - navigating the uncharted. N Engl J Med. 2020;382(13):1268–1269.
  • Liu K, Chen Y, Lin R, et al. Clinical features of COVID-19 in elderly patients: a comparison with young and middle-aged patients. J Infect. 2020;80(6):e14–e18.
  • Jordan RE, Adab P, Cheng KK. Covid-19: risk factors for severe disease and death. BMJ. 2020;368:m1198.
  • Rockx B, Baas T, Zornetzer GA, et al. Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection. J Virol. 2009;83(14):7062–7074.
  • Delgado-Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med Res. 2020;51(5):384–387.
  • Lupescu A, Bissinger R, Goebel T, et al. Enhanced suicidal erythrocyte death contributing to anemia in the elderly. Cell Physiol Biochem. 2015;36(2):773–783.
  • Aydemir D, Ulusu NN. Is glucose-6-phosphate dehydrogenase enzyme deficiency a factor in Coronavirus-19 (COVID-19) infections and deaths? Pathog Glob Health. 2020;114(3):109–110.
  • Andrasfay T, Goldman N. Reductions in 2020 US life expectancy due to COVID-19 and the disproportionate impact on the Black and Latino populations. medRxiv. 2020.
  • Jain SK, Palmer M. Effect of glucose-6-phosphate dehydrogenase deficiency on reduced and oxidized glutathione and lipid peroxide levels in the blood of African-Americans. Clin Chim Acta. 1996;253(1-2):181–183.
  • Jain SK, Parsanathan R, Levine SN, et al. The potential link between inherited G6PD deficiency, oxidative stress, and vitamin D deficiency and the racial inequities in mortality associated with COVID-19. Free Radic Biol Med. 2020;161:84–91.
  • Zulfiqar H, Mathew G, Horrall S. Amebiasis. Treasure Island (FL): StatPearls; 2020.
  • Pillat MM, Kruger A, Guimaraes LMF, et al. Insights in chloroquine action: perspectives and implications in malaria and COVID-19. Cytometry A. 2020;97(9):872–881.
  • Katz SJ, Russell AS. Re-evaluation of antimalarials in treating rheumatic diseases: re-appreciation and insights into new mechanisms of action. Curr Opin Rheumatol. 2011;23(3):278–281.
  • Connolly KM, Stecher VJ, Danis E, et al. Alteration of interleukin-1 activity and the acute phase response in adjuvant arthritic rats treated with disease modifying antirheumatic drugs. Agents Actions. 1988;25(1-2):94–105.
  • Tricou V, Minh NN, Van TP, et al. A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Negl Trop Dis. 2010;4(8):e785.
  • Roques P, Thiberville SD, Dupuis-Maguiraga L, et al. Paradoxical effect of chloroquine treatment in enhancing chikungunya virus infection. Viruses. 2018;10(5):268.
  • Maheshwari RK, Srikantan V, Bhartiya D. Chloroquine enhances replication of Semliki Forest virus and encephalomyocarditis virus in mice. J Virol. 1991;65(2):992–995.
  • Chauhan A, Tikoo A. The enigma of the clandestine association between chloroquine and HIV-1 infection. HIV Med. 2015;16(10):585–590.
  • Paton NI, Lee L, Xu Y, et al. Chloroquine for influenza prevention: a randomised, double-blind, placebo controlled trial. Lancet Infect Dis. 2011;11(9):677–683.
  • Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antiviral Res. 2020;177:104762.
  • Kassi EN, Papavassiliou KA, Papavassiliou AG. G6PD and chloroquine: Selecting the treatment against SARS-CoV-2? J Cell Mol Med. 2020;24(9):4913–4914.
  • Kuipers MT, van Zwieten R, Heijmans J, et al. Glucose-6-phosphate dehydrogenase deficiency-associated hemolysis and methemoglobinemia in a COVID-19 patient treated with chloroquine. Am J Hematol. 2020;95(8):E194–E196.
  • De Franceschi L, Costa E, Dima F, et al. Glucose-6-phosphate dehydrogenase deficiency associated hemolysis in COVID-19 patients treated with hydroxychloroquine/chloroquine: New case reports coming out. Eur J Intern Med. 2020;80:103.
  • Beauverd Y, Adam Y, Assouline B, et al. COVID-19 infection and treatment with hydroxychloroquine cause severe haemolysis crisis in a patient with glucose-6-phosphate dehydrogenase deficiency. Eur J Haematol. 2020;105(3):357–359.
  • Saldarriaga MM, Ramirez de Oleo IE, Johnson B. Retrospective Study: Association of Hydroxychloroquine Use and Hemolytic Anemia in Patients with Low Levels of Glucose-6-Phosphate Dehydrogenase (G6PD). ACR/ARHP Annual Meeting 2018.
  • Mohammad S, Clowse MEB, Eudy AM, et al. Examination of Hydroxychloroquine Use and Hemolytic Anemia in G6PDH-Deficient Patients. Arthritis Care Res (Hoboken)). 2018;70(3):481–485.
  • Schilling WHK, Bancone G, White NJ. No evidence that chloroquine or hydroxychloroquine induce hemolysis in G6PD deficiency. Blood Cells Mol Dis. 2020;85:102484.
  • Walsh EE, Frenck R, Falsey AR, et al. RNA-based COVID-19 vaccine BNT162b2 selected for a pivotal efficacy study. medRxiv. 2020.
  • Mannick JB, Morris M, Hockey HP et al. TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci Transl Med. 2018;10:449.
  • Martel J, Wu CY, Peng HH, et al. Plant and fungal products that extend lifespan in Caenorhabditis elegans. Microb Cell. 2020;7(10):255–269.
  • Luo P, Qiu L, Liu Y, et al. Metformin treatment was associated with decreased mortality in COVID-19 patients with diabetes in a retrospective analysis. Am J Trop Med Hyg. 2020;103(1):69–72.
  • Bramante C, Ingraham N, Murray T, et al. Observational study of metformin and risk of mortality in patients hospitalized with Covid-19. medRxiv. 2020.
  • Martel J, Ojcius DM, Wu CY, et al. Emerging use of senolytics and senomorphics against aging and chronic diseases. Med Res Rev. 2020;40(6):2114–2131.
  • Calap-Quintana P, Soriano S, Llorens JV, et al. TORC1 inhibition by rapamycin promotes antioxidant defences in a drosophila model of Friedreich's ataxia. PLoS One. 2015;10(7):e0132376.
  • Bharath LP, Agrawal M, McCambridge G, et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 2020;32(1):44–55e6.
  • Lewinska A, Adamczyk-Grochala J, Bloniarz D, et al. AMPK-mediated senolytic and senostatic activity of quercetin surface functionalized Fe3O4 nanoparticles during oxidant-induced senescence in human fibroblasts. Redox Biol. 2020;28:101337.
  • Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020;288(5):518–536.
  • Scheen AJ. Metformin and COVID-19: From cellular mechanisms to reduced mortality. Diabetes Metab. 2020;46(6):423–426.
  • Crouse A, Grimes T, Li P, et al. Metformin use is associated with reduced mortality in a diverse population with Covid-19 and diabetes. medRxiv. 2020.
  • Sargiacomo C, Sotgia F, Lisanti MP. COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection? Aging (Albany NY)). 2020;12(8):6511–6517.
  • Baker JR, Donnelly LE, Barnes PJ. Senotherapy: a new horizon for COPD therapy. Chest. 2020;158(2):562–570.
  • Willyard C. How anti-ageing drugs could boost COVID vaccines in older people. Nature. 2020;586(7829):352–354.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.