348
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Chemical and biological basis for development of novel radioprotective drugs for cancer therapy

, , , , , & show all
Pages 828-858 | Received 15 Oct 2020, Accepted 09 Dec 2020, Published online: 28 Jun 2021

References

  • Islam MT. Radiation interactions with biological systems. Int J Radiat Biol. 2017;93(5):487–493.
  • Mavragani IV, Nikitaki Z, Kalospyros SA, et al. Ionizing radiation and complex DNA damage: from prediction to detection challenges and biological significance. Cancers (Basel). 2019;11(11):1789.
  • O'Neill P, Wardman P. Radiation chemistry comes before radiation biology. Int J Radiat Biol. 2009;85(1):9–25.
  • Willers H, Dahm-Daphi J, Powell SN. Repair of radiation damage to DNA. Br J Cancer. 2004;90(7):1297–1301.
  • Rosen EM, Day R, Singh VK. New approaches to radiation protection. Front Oncol. 2014;4:381.
  • Ringborg U, Bergqvist D, Brorsson B, et al. The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001-summary and conclusions. Acta Oncol. 2003;42(5-6):357–365.
  • Berrington de Gonzalez A, Gilbert E, Curtis R, et al. Second solid cancers after radiation therapy: a systematic review of the epidemiologic studies of the radiation dose-response relationship. Int J Radiat Oncol Biol Phys. 2013;86(2):224–233.
  • Citrin DE. Recent developments in radiotherapy. N Engl J Med. 2017;377(22):2200–2201.
  • Saenger EL. Radiation accidents. Ann Emerg Med. 1986;15(9):1061–1066.
  • Miller KL. The nuclear reactor accident at Three Mile Island. Radiographics. 1994;14(1):215–224.
  • Goldman M. The Russian radiation legacy: its integrated impact and lessons. Environ Health Perspect. 1997;105(Suppl 6):1385–1391.
  • Vasin MV. Comments on the mechanisms of action of radiation protective agents: basis components and their polyvalence. Springerplus. 2014;3:414.
  • Weiss JF, Landauer MR. History and development of radiation-protective agents. Int J Radiat Biol. 2009;85(7):539–573.
  • Phillips TL. Rationale for initial clinical trials and future development of radioprotectors. Cancer Clin Trials. 1980;3(2):165–173.
  • Reisz JA, Bansal N, Qian J, et al. Effects of ionizing radiation on biological molecules-mechanisms of damage and emerging methods of detection. Antioxid Redox Signal. 2014;21(2):260–292.
  • Salganik RI. The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population. J Am Coll Nutr. 2001;20(5 Suppl):464S–472S. discussion 473S-475S.
  • McClain DE, Kalinich JF, Ramakrishnan N. Trolox inhibits apoptosis in irradiated MOLT-4 lymphocytes. Faseb J. 1995;9(13):1345–1354.
  • Patt HM, Tyree EB, Straube RL, et al. Cysteine protection against X irradiation. Science. 1949;110(2852):213–214.
  • Limoli CL, Kaplan MI, Giedzinski E, et al. Attenuation of radiation-induced genomic instability by free radical scavengers and cellular proliferation. Free Radic Biol Med. 2001;31(1):10–19.
  • Jensen GL, Meister A. Radioprotection of human lymphoid cells by exogenously supplied glutathione is mediated by gamma-glutamyl transpeptidase. Proc Natl Acad Sci USA. 1983;80(15):4714–4717.
  • Wellner VP, Anderson ME, Puri RN, et al. Radioprotection by glutathione ester: transport of glutathione ester into human lymphoid cells and fibroblasts. Proc Natl Acad Sci USA. 1984;81(15):4732–4735.
  • el-Nahas SM, Mattar FE, Mohamed AA. Radioprotective effect of vitamins C and E. Mutat Res. 1993;301(2):143–147.
  • Neal R, Matthews RH, Lutz P, et al. Antioxidant role of N-acetyl cysteine isomers following high dose irradiation. Free Radic Biol Med. 2003;34(6):689–695.
  • Ainsworth EJ. From endotoxins to newer immunomodulators: survival-promoting effects of microbial polysaccharide complexes in irradiated animals. Pharmacol Ther. 1988;39(1-3):223–241.
  • Sorenson JR. Essential metalloelement metabolism and radiation protection and recovery. Radiat Res. 1992;132(1):19–29.
  • Seifter E, Rettura G, Padawer J, et al. Morbidity and mortality reduction by supplemental vitamin A or beta-carotene in CBA mice given total-body gamma-radiation. J Natl Cancer Inst. 1984;73(5):1167–1177.
  • Weiss JF, Kumar KS, Walden TL, et al. Advances in radioprotection through the use of combined agent regimens. Int J Radiat Biol. 1990;57(4):709–722.
  • Weiss JF, Srinivasan V, Kumar KS, et al. Radioprotection by metals: selenium. Adv Space Res. 1992;12(2-3):223–231.
  • Abou-Seif MA, El-Naggar MM, El-Far M, et al. Amelioration of radiation-induced oxidative stress and biochemical alteration by SOD model compounds in pre-treated gamma-irradiated rats. Clin Chim Acta. 2003;337(1-2):23–33.
  • Uma Devi P, Ganasoundari A, Rao BS, et al. In vivo radioprotection by ocimum flavonoids: survival of mice. Radiat Res. 1999;151(1):74–78.
  • Emerit I, Oganesian N, Sarkisian T, et al. Clastogenic factors in the plasma of Chernobyl accident recovery workers: anticlastogenic effect of Ginkgo biloba extract. Radiat Res. 1995;144(2):198–205.
  • Emerit I, Oganesian N, Arutyunian R, et al. Oxidative stress-related clastogenic factors in plasma from Chernobyl liquidators: protective effects of antioxidant plant phenols, vitamins and oligoelements. Mutat Res. 1997;377(2):239–246.
  • George KC, Hebbar SA, Kale SP, et al. Caffeine protects mice against whole-body lethal dose of gamma-irradiation. J Radiol Prot. 1999;19(2):171–176.
  • Dion MW, Hussey DH, Osborne JW. The effect of pentoxifylline on early and late radiation injury following fractionated irradiation in C3H mice. Int J Radiat Oncol Biol Phys. 1989;17(1):101–107.
  • Ueda T, Toyoshima Y, Moritani T, et al. Protective effect of dipyridamole against lethality and lipid peroxidation in liver and spleen of the ddY mouse after whole-body irradiation. Int J Radiat Biol. 1996;69(2):199–204.
  • Davis TA, Mungunsukh O, Zins S, et al. Genistein induces radioprotection by hematopoietic stem cell quiescence. Int J Radiat Biol. 2008;84(9):713–726.
  • Pal S, Saha C, Dey SK. Studies on black tea (Camellia sinensis) extract as a potential antioxidant and a probable radioprotector. Radiat Environ Biophys. 2013;52(2):269–278.
  • Nagaprashantha LD, Vatsyayan R, Singhal J, et al. Anti-cancer effects of novel flavonoid vicenin-2 as a single agent and in synergistic combination with docetaxel in prostate cancer. Biochem Pharmacol. 2011;82(9):1100–1109.
  • Epperly MW, Wang H, Jones JA, et al. Antioxidant-chemoprevention diet ameliorates late effects of total-body irradiation and supplements radioprotection by MnSOD-plasmid liposome administration. Radiat Res. 2011;175(6):759–765.
  • Bacq ZM. The amines and particularly cysteamine as protectors against roentgen rays. Acta Radiol. 1954;41(1):47–55.
  • Mikaelsen K. The protective effect of glutathione against radiation-induced chromosome aberrations. Science. 1952;116(3007):172–174.
  • Mittler S. The failure of sulphhydryl compounds, AET, MEA, and glutathione to protect against X-ray induced chromosome aberrations in male drosophila. Int J Radiat Biol Relat Stud Phys Chem Med. 1964;8:405–413.
  • Brown DQ, Graham WJ, MacKenzie LJ, et al. Can WR-2721 be improved upon? Pharmacol Ther. 1988;39(1-3):157–168.
  • Antonadou D, Pepelassi M, Synodinou M, et al. Prophylactic use of amifostine to prevent radiochemotherapy-induced mucositis and xerostomia in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2002;52(3):739–747.
  • Brizel DM, Wasserman TH, Henke M, et al. and others. Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J Clin Oncol. 2000;18(19):3339–3345.
  • Mell LK, Malik R, Komaki R, et al. Effect of amifostine on response rates in locally advanced non-small-cell lung cancer patients treated on randomized controlled trials: a meta-analysis. Int J Radiat Oncol Biol Phys. 2007;68(1):111–118.
  • Shaw LM, Bonner HS, Schuchter L, et al. Pharmacokinetics of amifostine: effects of dose and method of administration. Semin Oncol. 1999;26(2 Suppl 7):34–36.
  • Durand RE, Olive PL. Radiosensitisation and radioprotection by BSO and WR-2721: the role of oxygenation. Br J Cancer. 1989;60(4):517–522.
  • Durand RE. Radioprotection by WR-2721 in vitro at low oxygen tensions: implications for its mechanisms of action. Br J Cancer. 1983;47(3):387–392.
  • Savoye C, Swenberg C, Hugot S, et al. Thiol WR-1065 and disulphide WR-33278, two metabolites of the drug ethyol (WR-2721), protect DNA against fast neutron-induced strand breakage. Int J Radiat Biol. 1997;71(2):193–202.
  • Hensley ML, Hagerty KL, Kewalramani T, et al. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol. 2009;27(1):127–145.
  • Copp RR, Peebles DD, Soref CM, et al. Radioprotective efficacy and toxicity of a new family of aminothiol analogs. Int J Radiat Biol. 2013;89(7):485–492.
  • Uma Devi P, Thomas B. Bone marrow cell protection and modification of drug toxicity by combination of protectors. Pharmacol Ther. 1988;39(1-3):213–214.
  • Kilciksiz S, Demirel C, Erdal N, et al. The effect of N-acetylcysteine on biomarkers for radiation-induced oxidative damage in a rat model. Acta Med Okayama. 2008;62(6):403–409.
  • Wu W, Abraham L, Ogony J, et al. Effects of N-acetylcysteine amide (NACA), a thiol antioxidant on radiation-induced cytotoxicity in Chinese hamster ovary cells. Life Sci. 2008;82(21-22):1122–1130.
  • Shirazi A, Ghobadi G, Ghazi-Khansari M. A radiobiological review on melatonin: a novel radioprotector. J Radiat Res. 2007;48(4):263–272.
  • Poeggeler B, Saarela S, Reiter RJ, et al. Melatonin-a highly potent endogenous radical scavenger and electron donor: new aspects of the oxidation chemistry of this indole accessed in vitro. Ann N Y Acad Sci. 1994;738:419–420.
  • Vijayalaxmi, Reiter RJ, Meltz ML. Melatonin protects human blood lymphocytes from radiation-induced chromosome damage. Mutat Res. 1995;346(1):23–31.
  • Vijayalaxmi, Reiter RJ, Herman TS, Meltz ML. Melatonin and radioprotection from genetic damage: in vivo/in vitro studies with human volunteers. Mutat Res. 1996;371(3-4):221–228.
  • Das B, Bennett PV, Cutter NC, et al. Melatonin protects human cells from clustered DNA damages, killing and acquisition of soft agar growth induced by X-rays or 970 MeV/n Fe ions. Int J Radiat Biol. 2011;87(6):545–555.
  • Blickenstaff RT, Brandstadter SM, Reddy S, et al. Potential radioprotective agents. 1. Homologs of melatonin. J Pharm Sci. 1994;83(2):216–218.
  • Vijayalaxmi Meltz ML, Reiter RJ, Herman TS, et al. Melatonin and protection from whole-body irradiation: survival studies in mice. Mutat Res. 1999;425(1):21–27.
  • Karbownik M, Reiter RJ. Melatonin protects against oxidative stress caused by delta-aminolevulinic acid: implications for cancer reduction. Cancer Invest. 2002;20(2):276–286.
  • Karbownik M, Reiter RJ, Qi W, et al. Protective effects of melatonin against oxidation of guanine bases in DNA and decreased microsomal membrane fluidity in rat liver induced by whole body ionizing radiation. Mol Cell Biochem. 2000;211(1-2):137–144.
  • Tan DX, Manchester LC, Burkhardt S, et al. N1-acetyl-N2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. Faseb J. 2001;15(12):2294–2296.
  • Manda K, Ueno M, Anzai K. AFMK, a melatonin metabolite, attenuates X-ray-induced oxidative damage to DNA, proteins and lipids in mice. J Pineal Res. 2007;42(4):386–393.
  • Niu Y, Wang H, Wiktor-Brown D, et al. Irradiated esophageal cells are protected from radiation-induced recombination by MnSOD gene therapy. Radiat Res. 2010;173(4):453–461.
  • Epperly MW, Dixon T, Wang H, et al. Modulation of radiation-induced life shortening by systemic intravenous MnSOD-plasmid liposome gene therapy. Radiat Res. 2008;170(4):437–443.
  • Lee JH, Park JW. A manganese porphyrin complex is a novel radiation protector. Free Radic Biol Med. 2004;37(2):272–283.
  • Li H, Wang Y, Pazhanisamy SK, et al. Mn(III) meso-tetrakis-(N-ethylpyridinium-2-yl) porphyrin mitigates total body irradiation-induced long-term bone marrow suppression. Free Radic Biol Med. 2011;51(1):30–37.
  • Rabbani ZN, Salahuddin FK, Yarmolenko P, et al. Low molecular weight catalytic metalloporphyrin antioxidant AEOL 10150 protects lungs from fractionated radiation. Free Radic Res. 2007;41(11):1273–1282.
  • Jaramillo MC, Frye JB, Crapo JD, et al. Increased manganese superoxide dismutase expression or treatment with manganese porphyrin potentiates dexamethasone-induced apoptosis in lymphoma cells. Cancer Res. 2009;69(13):5450–5457.
  • Liu JF, Wang X, Tan HN, et al. Effect of heparin-superoxide dismutase on γ-radiation induced DNA damage in vitro and in vivo. Drug Discov Ther. 2010;4(5):355–361.
  • Pollard JM, Reboucas JS, Durazo A, et al. Radioprotective effects of manganese-containing superoxide dismutase mimics on ataxia-telangiectasia cells. Free Radic Biol Med. 2009;47(3):250–260.
  • Rosenthal RA, Fish B, Hill RP, et al. Salen Mn complexes mitigate radiation injury in normal tissues. Anticancer Agents Med Chem. 2011;11(4):359–372.
  • Mitchell JB, Samuni A, Krishna MC, et al. Biologically active metal-independent superoxide dismutase mimics. Biochemistry. 1990;29(11):2802–2807.
  • Samuni A, Winkelsberg D, Pinson A, et al. Nitroxide stable radicals protect beating cardiomyocytes against oxidative damage. J Clin Invest. 1991;87(5):1526–1530.
  • Krishna MC, Grahame DA, Samuni A, et al. Oxoammonium cation intermediate in the nitroxide-catalyzed dismutation of superoxide. Proc Natl Acad Sci USA. 1992;89(12):5537–5541.
  • Hahn SM, Tochner Z, Krishna CM, et al. Tempol, a stable free radical, is a novel murine radiation protector. Cancer Res. 1992;52(7):1750–1753.
  • Cotrim AP, Hyodo F, Matsumoto K, et al. Differential radiation protection of salivary glands versus tumor by Tempol with accompanying tissue assessment of Tempol by magnetic resonance imaging. Clin Cancer Res. 2007;13(16):4928–4933.
  • Jiang J, Belikova NA, Hoye AT, et al. A mitochondria-targeted nitroxide/hemigramicidin S conjugate protects mouse embryonic cells against gamma irradiation. Int J Radiat Oncol Biol Phys. 2008;70(3):816–825.
  • Gokhale A, Rwigema JC, Epperly MW, et al. Small molecule GS-nitroxide ameliorates ionizing irradiation-induced delay in bone wound healing in a novel murine model. In Vivo. 2010;24(4):377–385.
  • Rajagopalan MS, Gupta K, Epperly MW, et al. Kagan VE and others. The mitochondria-targeted nitroxide JP4-039 augments potentially lethal irradiation damage repair. In Vivo. 2009;23(5):717–726.
  • Epperly MW, Goff JP, Li S, et al. Intraesophageal administration of GS-nitroxide (JP4-039) protects against ionizing irradiation-induced esophagitis. In Vivo. 2010;24(6):811–819.
  • Goff JP, Epperly MW, Dixon T, et al. Radiobiologic effects of GS-nitroxide (JP4-039) on the hematopoietic syndrome. In Vivo. 2011;25(3):315–323.
  • Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13(6):688–694.
  • Qian L, Cao F, Cui J, et al. Radioprotective effect of hydrogen in cultured cells and mice. Free Radic Res. 2010;44(3):275–282.
  • Chuai Y, Shen J, Qian L, et al. Hydrogen-rich saline protects spermatogenesis and hematopoiesis in irradiated BALB/c mice. Med Sci Monit. 2012;18(3):BR89–94.
  • Qian L, Cao F, Cui J, et al. The potential cardioprotective effects of hydrogen in irradiated mice. J Radiat Res. 2010;51(6):741–747.
  • Smith PJ, Anderson CO. Modification of the radiation sensitivity of human tumour cells by a bis-benzimidazole derivative. Int J Radiat Biol Relat Stud Phys Chem Med. 1984;46(4):331–344.
  • Martin RF, Broadhurst S, D'Abrew S, et al. Radioprotection by DNA ligands. Br J Cancer Suppl. 1996;27:S99–S101.
  • Martin RF, Broadhurst S, Reum ME, et al. In vitro studies with methylproamine: a potent new radioprotector. Cancer Res. 2004;64(3):1067–1070.
  • Mishra K, Bhardwaj R, Chaudhury NK. Netropsin, a minor groove binding ligand: a potential radioprotective agent. Radiat Res. 2009;172(6):698–705.
  • Zoidis E, Seremelis I, Kontopoulos N, et al. Selenium-dependent antioxidant enzymes: actions and properties of selenoproteins. Antioxidants (Basel). 2018;7(5):66.
  • Tak JK, Park JW. The use of ebselen for radioprotection in cultured cells and mice. Free Radic Biol Med. 2009;46(8):1177–1185.
  • Kunwar A, Bansal P, Kumar SJ, et al. Unnikrishnan MK and others. In vivo radioprotection studies of 3,3'-diselenodipropionic acid, a selenocystine derivative. Free Radic Biol Med. 2010;48(3):399–410.
  • Miller LL, Neta R. Therapeutic utility of cytokines in counteracting the bone marrow suppression of radio- and chemo-therapy. In: Gearing A, Rossio J, Oppenheim JJ, editors. Clinical applications of cytokines: role in pathogenesis, diagnosis and therapy. Vol 225. New York: Oxford University Press; 1993.
  • Neta R. Cytokines in radioprotection and therapy of radiation injury. Biotherapy. 1988;1(1):41–45.
  • Farese AM, Williams DE, Seiler FR, et al. Combination protocols of cytokine therapy with interleukin-3 and granulocyte-macrophage colony-stimulating factor in a primate model of radiation-induced marrow aplasia. Blood. 1993;82(10):3012–3018.
  • MacVittie TJ, Farese AM, Patchen ML, et al. Therapeutic efficacy of recombinant interleukin-6 (IL-6) alone and combined with recombinant human IL-3 in a nonhuman primate model of high-dose, sublethal radiation-induced marrow aplasia. Blood. 1994;84(8):2515–2522.
  • Patchen ML, MacVittie TJ, Williams JL, Schwartz GN, et al. Administration of interleukin-6 stimulates multilineage hematopoiesis and accelerates recovery from radiation-induced hematopoietic depression. Blood. 1991;77(3):472–480.
  • Bolotin E, Smogorzewska M, Smith S, et al. Enhancement of thymopoiesis after bone marrow transplant by in vivo interleukin-7. Blood. 1996;88(5):1887–1894.
  • Redlich CA, Gao X, Rockwell S, et al. IL-11 enhances survival and decreases TNF production after radiation-induced thoracic injury. J Immunol. 1996;157(4):1705–1710.
  • Neta R, Stiefel SM, Finkelman F, et al. IL-12 protects bone marrow from and sensitizes intestinal tract to ionizing radiation. J Immunol. 1994;153(9):4230–4237.
  • Neta R, Vogel SN, Plocinski JM, et al. In vivo modulation with anti-interleukin-1 (IL-1) receptor (p80) antibody 35F5 of the response to IL-1. The relationship of radioprotection, colony-stimulating factor, and IL-6. Blood. 1990;76(1):57–62.
  • Neta R, Oppenheim JJ, Douches SD. Interdependence of the radioprotective effects of human recombinant interleukin 1 alpha, tumor necrosis factor alpha, granulocyte colony-stimulating factor, and murine recombinant granulocyte-macrophage colony-stimulating factor. J Immunol. 1988;140(1):108–111.
  • Vacek A, Tacev T, Hofer M. Modulation of radioprotective effects of respiratory hypoxia by changing the duration of hypoxia before irradiation and by combining hypoxia and administration of hemopoiesis-stimulating agents. Strahlenther Onkol. 2001;177(9):474–481.
  • Farese AM, Hunt P, Grab LB, et al. Combined administration of recombinant human megakaryocyte growth and development factor and granulocyte colony-stimulating factor enhances multilineage hematopoietic reconstitution in nonhuman primates after radiation-induced marrow aplasia. J Clin Invest. 1996;97(9):2145–2151.
  • Hokom MM, Lacey D, Kinstler OB, et al. Grasel T and others. Pegylated megakaryocyte growth and development factor abrogates the lethal thrombocytopenia associated with carboplatin and irradiation in mice. Blood. 1995;86(12):4486–4492.
  • Singh VK, Yadav VS. Role of cytokines and growth factors in radioprotection. Exp Mol Pathol. 2005;78(2):156–169.
  • MacVittie TJ, Farese AM, Herodin F, et al. Combination therapy for radiation-induced bone marrow aplasia in nonhuman primates using synthokine SC-55494 and recombinant human granulocyte colony-stimulating factor. Blood. 1996;87(10):4129–4135.
  • Boraschi D, Nencioni L, Villa L, et al. In vivo stimulation and restoration of the immune response by the noninflammatory fragment 163-171 of human interleukin 1 beta. J Exp Med. 1988;168(2):675–686.
  • Williams DE, Dunn JT, Park LS, et al. A GM-CSF/IL-3 fusion protein promotes neutrophil and platelet recovery in sublethally irradiated rhesus monkeys. Biotechnol Ther. 1993;4(1-2):17–29.
  • Neta R, Vogel SN, Oppenheim JJ, et al. Cytokines in radioprotection. Comparison of the radioprotective effects of IL-1 to IL-2, GM-CSF and IFN gamma. Lymphokine Res. 1986;5 (Suppl 1):S105–S10.
  • Neta R, Oppenheim JJ. Radioprotection with cytokines: a clarification of terminology. Cancer Cells. 1991;3(11):457.
  • Neta R. Modulation with cytokines of radiation injury: suggested mechanisms of action. Environ Health Perspect. 1997;105(Suppl 6):1463–1465.
  • Okunieff P, Wu T, Huang K, et al. Differential radioprotection of three mouse strains by basic or acidic fibroblast growth factor. Br J Cancer Suppl. 1996;27:S105–S8.
  • Wilkins HR, Ohneda K, Keku TO, et al. Reduction of spontaneous and irradiation-induced apoptosis in small intestine of IGF-I transgenic mice. Am J Physiol Gastrointest Liver Physiol. 2002;283(2):G457–64.
  • Qiu W, Leibowitz B, Zhang L, et al. Growth factors protect intestinal stem cells from radiation-induced apoptosis by suppressing PUMA through the PI3K/AKT/p53 axis. Oncogene. 2010;29(11):1622–1632.
  • Farrell CL, Bready JV, Rex KL, et al. Starnes CO and others. Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res. 1998;58(5):933–939.
  • Gratwohl A, John L, Baldomero H, et al. Wodnar-Filipowicz A. FLT-3 ligand provides hematopoietic protection from total body irradiation in rabbits. Blood. 1998;92(3):765–769.
  • Oh H, Seong J, Kim W, et al. Recombinant human epidermal growth factor (rhEGF) protects radiation-induced intestine injury in murine system. J Radiat Res. 2010;51(5):535–541.
  • Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 2013;12:86.
  • Ainsworth EJ, Hatch MH. The effect of Proteus morganii endotoxin on radiation mortality in mice. Radiat Res. 1960;13:632–638.
  • Pratt AG, Emerson RJ, Levin S, et al. Granulocytic recovery in the polycythemic dog treated with endotoxin postirradiation. Radiat Res. 1973;56(1):162–170.
  • Burdelya LG, Krivokrysenko VI, Tallant TC, et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science. 2008;320(5873):226–230.
  • Singh VK, Ducey EJ, Fatanmi OO, et al. CBLB613: a TLR 2/6 agonist, natural lipopeptide of Mycoplasma arginini , as a novel radiation countermeasure. Radiat Res. 2012;177(5):628–642.
  • Egan LJ, Eckmann L, Greten FR, et al. IkappaB-kinasebeta-dependent NF-kappaB activation provides radioprotection to the intestinal epithelium. Proc Natl Acad Sci USA. 2004;101(8):2452–2457.
  • Riehl T, Cohn S, Tessner T, et al. Lipopolysaccharide is radioprotective in the mouse intestine through a prostaglandin-mediated mechanism. Gastroenterology. 2000;118(6):1106–1116.
  • Bogojević D, Poznanović G, Grdović N, et al. Administration of rat acute-phase protein α(2)-macroglobulin before total-body irradiation initiates cytoprotective mechanisms in the liver. Radiat Environ Biophys. 2011;50(1):167–179.
  • Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci USA. 1994;91(21):9926–9930.
  • Rangasamy T, Cho CY, Thimmulappa RK, et al. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest. 2004;114(9):1248–1259.
  • Travis EL, Rachakonda G, Zhou X, et al. NRF2 deficiency reduces life span of mice administered thoracic irradiation. Free Radic Biol Med. 2011;51(6):1175–1183.
  • Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007;47:89–116.
  • McDonald JT, Kim K, Norris AJ, et al. Ionizing radiation activates the Nrf2 antioxidant response. Cancer Res. 2010;70(21):8886–8895.
  • Singh A, Bodas M, Wakabayashi N, et al. Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance. Antioxid Redox Signal. 2010;13(11):1627–1637.
  • Eskiocak U, Kim SB, Roig AI, et al. CDDO-Me protects against space radiation-induced transformation of human colon epithelial cells. Radiat Res. 2010;174(1):27–36.
  • Kim SB, Pandita RK, Eskiocak U, et al. Targeting of Nrf2 induces DNA damage signaling and protects colonic epithelial cells from ionizing radiation. Proc Natl Acad Sci USA. 2012;109(43):E2949–55.
  • Bai H, Liu R, Chen HL, Zhang W, et al. Enhanced antioxidant effect of caffeic acid phenethyl ester and Trolox in combination against radiation induced-oxidative stress. Chem Biol Interact. 2014;207:7–15.
  • Patwardhan RS, Sharma D, Checker R, Sandur SK. Mitigation of radiation-induced hematopoietic injury via regulation of cellular MAPK/phosphatase levels and increasing hematopoietic stem cells. Free Radic Biol Med. 2014;68:52–64.
  • Khan NM, Sandur SK, Checker R, et al. Pro-oxidants ameliorate radiation-induced apoptosis through activation of the calcium-ERK1/2-Nrf2 pathway. Free Radic Biol Med. 2011;51(1):115–128.
  • Tsai JJ, Dudakov JA, Takahashi K, et al. Nrf2 regulates haematopoietic stem cell function. Nat Cell Biol. 2013;15(3):309–316.
  • Kim JH, Thimmulappa RK, Kumar V, et al. NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation. J Clin Invest. 2014;124(2):730–741.
  • Ayrapetov MK, Xu C, Sun Y, et al. Activation of Hif1α by the prolylhydroxylase inhibitor dimethyoxalyglycine decreases radiosensitivity. PLoS One. 2011;6(10):e26064
  • Forristal CE, Winkler IG, Nowlan B, et al. Pharmacologic stabilization of HIF-1α increases hematopoietic stem cell quiescence in vivo and accelerates blood recovery after severe irradiation. Blood. 2013;121(5):759–769.
  • Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol. 2001;65(4):391–426.
  • Thotala DK, Hallahan DE, Yazlovitskaya EM. Inhibition of glycogen synthase kinase 3 beta attenuates neurocognitive dysfunction resulting from cranial irradiation. Cancer Res. 2008;68(14):5859–5868.
  • Thotala DK, Geng L, Dickey AK, et al. A new class of molecular targeted radioprotectors: GSK-3beta inhibitors. Int J Radiat Oncol Biol Phys. 2010;76(2):557–565.
  • Thotala DK, Hallahan DE, Yazlovitskaya EM. Glycogen synthase kinase 3β inhibitors protect hippocampal neurons from radiation-induced apoptosis by regulating MDM2-p53 pathway. Cell Death Differ. 2012;19(3):387–396.
  • Barton KL, Misuraca K, Cordero F, et al. PD-0332991, a CDK4/6 inhibitor, significantly prolongs survival in a genetically engineered mouse model of brainstem glioma. PLoS One. 2013;8(10):e77639
  • Bartek J, Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 2003;3(5):421–429.
  • Chen L, Gilkes DM, Pan Y, et al. ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. Embo J. 2005;24(19):3411–3422.
  • Komarova EA, Chernov MV, Franks R, et al. Transgenic mice with p53-responsive lacZ: p53 activity varies dramatically during normal development and determines radiation and drug sensitivity in vivo. Embo J. 1997;16(6):1391–1400.
  • Komarov PG, Komarova EA, Kondratov RV, et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science. 1999;285(5434):1733–1737.
  • Strom E, Sathe S, Komarov PG, et al. Skaliter R and others. Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol. 2006;2(9):474–479.
  • Takai H, Naka K, Okada Y, et al. Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. Embo J. 2002;21(19):5195–5205.
  • Carlessi L, Buscemi G, Larson G, et al. Biochemical and cellular characterization of VRX0466617, a novel and selective inhibitor for the checkpoint kinase Chk2. Mol Cancer Ther. 2007;6(3):935–944.
  • Jobson AG, Lountos GT, Lorenzi PL, et al. Cellular inhibition of checkpoint kinase 2 (Chk2) and potentiation of camptothecins and radiation by the novel Chk2 inhibitor PV1019 [7-nitro-1H-indole-2-carboxylic acid {4-[1-(guanidinohydrazone)-ethyl]-phenyl}-amide]. J Pharmacol Exp Ther. 2009;331(3):816–826.
  • Wander SA, Hennessy BT, Slingerland JM. Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest. 2011;121(4):1231–1241.
  • Chen C, Liu Y, Liu R, et al. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med. 2008;205(10):2397–2408.
  • Castilho RM, Squarize CH, Chodosh LA, et al. mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell. 2009;5(3):279–289.
  • Iglesias-Bartolome R, Patel V, Cotrim A, et al. mTOR inhibition prevents epithelial stem cell senescence and protects from radiation-induced mucositis. Cell Stem Cell. 2012;11(3):401–414.
  • Isenberg JS, Ridnour LA, Dimitry J, et al. CD47 is necessary for inhibition of nitric oxide-stimulated vascular cell responses by thrombospondin-1. J Biol Chem. 2006;281(36):26069–26080.
  • Isenberg JS, Ridnour LA, Perruccio EM, et al. Thrombospondin-1 inhibits endothelial cell responses to nitric oxide in a cGMP-dependent manner. Proc Natl Acad Sci USA. 2005;102(37):13141–13146.
  • Isenberg JS, Maxhimer JB, Hyodo F, et al. Thrombospondin-1 and CD47 limit cell and tissue survival of radiation injury. Am J Pathol. 2008;173(4):1100–1112.
  • Isenberg JS, Hyodo F, Pappan LK, et al. Blocking thrombospondin-1/CD47 signaling alleviates deleterious effects of aging on tissue responses to ischemia. Arterioscler Thromb Vasc Biol. 2007;27(12):2582–2588.
  • Liebmann J, DeLuca AM, Coffin D, et al. In vivo radiation protection by nitric oxide modulation. Cancer Res. 1994;54(13):3365–3368.
  • Maxhimer JB, Soto-Pantoja DR, Ridnour LA, et al. Radioprotection in normal tissue and delayed tumor growth by blockade of CD47 signaling. Sci Transl Med. 2009;1(3):3ra7
  • Soto-Pantoja DR, Miller TW, Pendrak ML, et al. CD47 deficiency confers cell and tissue radioprotection by activation of autophagy. Autophagy. 2012;8(11):1628–1642.
  • Friedman EJ. Immune modulation by ionizing radiation and its implications for cancer immunotherapy. Curr Pharm Des. 2002;8(19):1765–1780.
  • Haimovitz-Friedman A, Kan CC, Ehleiter D, et al. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med. 1994;180(2):525–535.
  • Mullen TD, Jenkins RW, Clarke CJ, et al. Ceramide synthase-dependent ceramide generation and programmed cell death: involvement of salvage pathway in regulating postmitochondrial events. J Biol Chem. 2011;286(18):15929–15942.
  • Alphonse G, Maalouf M, Battiston-Montagne P, et al. p53-independent early and late apoptosis is mediated by ceramide after exposure of tumor cells to photon or carbon ion irradiation. BMC Cancer. 2013;13:151
  • Santana P, Peña LA, Haimovitz-Friedman A, et al. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell. 1996;86(2):189–199.
  • Hwang D, Popat R, Bragdon C, et al. Effects of ceramide inhibition on experimental radiation-induced oral mucositis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100(3):321–329.
  • Rotolo J, Stancevic B, Zhang J, et al. Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice. J Clin Invest. 2012;122(5):1786–1790.
  • Bonnaud S, Niaudet C, Pottier G, et al. Sphingosine-1-phosphate protects proliferating endothelial cells from ceramide-induced apoptosis but not from DNA damage-induced mitotic death. Cancer Res. 2007;67(4):1803–1811.
  • Kagan VE, Borisenko GG, Tyurina YY, et al. Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radic Biol Med. 2004;37(12):1963–1985.
  • Atkinson J, Kapralov AA, Yanamala N, et al. Samhan-Arias AK and others. A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death. Nat Commun. 2011;2:497
  • Gottlieb TM, Oren M. p53 in growth control and neoplasia. Biochim Biophys Acta. 1996;1287(2-3):77–102.
  • Hendry JH, Cai WB, Roberts SA, et al. p53 deficiency sensitizes clonogenic cells to irradiation in the large but not the small intestine. Radiat Res. 1997;148(3):254–259.
  • Hasegawa M, Zhang Y, Niibe H, et al. Resistance of differentiating spermatogonia to radiation-induced apoptosis and loss in p53-deficient mice. Radiat Res. 1998;149(3):263–270.
  • Tron VA, Trotter MJ, Tang L, et al. p53-regulated apoptosis is differentiation dependent in ultraviolet B-irradiated mouse keratinocytes. Am J Pathol. 1998;153(2):579–585.
  • Westphal CH, Rowan S, Schmaltz C, et al. atm and p53 cooperate in apoptosis and suppression of tumorigenesis, but not in resistance to acute radiation toxicity. Nat Genet. 1997;16(4):397–401.
  • Sinn B, Schulze J, Schroeder G, et al. Pifithrin-α as a potential cytoprotective agent in radiotherapy: protection of normal tissue without decreasing therapeutic efficacy in glioma cells. Radiat Res. 2010;174(5):601–610.
  • Sohn D, Graupner V, Neise D, et al. Pifithrin-alpha protects against DNA damage-induced apoptosis downstream of mitochondria independent of p53. Cell Death Differ. 2009;16(6):869–878.
  • Marchenko ND, Zaika A, Moll UM. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem. 2000;275(21):16202–16212.
  • Mustata G, Li M, Zevola N, et al. Development of small-molecule PUMA inhibitors for mitigating radiation-induced cell death. Curr Top Med Chem. 2011;11(3):281–290.
  • Qiu W, Carson-Walter EB, Liu H, et al. PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell. 2008;2(6):576–583.
  • Shao L, Sun Y, Zhang Z, et al. Deletion of proapoptotic Puma selectively protects hematopoietic stem and progenitor cells against high-dose radiation. Blood. 2010;115(23):4707–4714.
  • Yu H, Shen H, Yuan Y, et al. Deletion of Puma protects hematopoietic stem cells and confers long-term survival in response to high-dose gamma-irradiation. Blood. 2010;115(17):3472–3480.
  • Leibowitz BJ, Qiu W, Liu H, et al. Uncoupling p53 functions in radiation-induced intestinal damage via PUMA and p21. Mol Cancer Res. 2011;9(5):616–625.
  • Kol R, Ben-Hur E. Radiation protection of stimulated human lymphocytes by nicotinamide. Radiat Environ Biophys. 1983;22(2):133–140.
  • Szeinfeld D. The multifactorial role of ATP in repair processes and radioprotection. Med Hypotheses. 1990;32(3):225–229.
  • Makedonov GP, Chekova VV, Yakubovskaya EL, et al. Modification of DNA repair by human interferons. Acta Biol Hung. 1990;41(1-3):187–197.
  • Hennig UG, Wang Q, Gee NH, et al. Protection and repair of gamma-radiation-induced lesions in mice with DNA or deoxyribonucleoside treatments. Mutat Res. 1996;350(1):247–254.
  • Dittmann KH, Gueven N, Mayer C, et al. The presence of wild-type TP53 is necessary for the radioprotective effect of the Bowman-Birk proteinase inhibitor in normal fibroblasts. Radiat Res. 1998;150(6):648–655.
  • Dittmann K, Virsik-Köpp P, Mayer C, et al. Bowman-Birk protease inhibitor activates DNA-dependent protein kinase and reduces formation of radiation-induced dicentric chromosomes. Int J Radiat Biol. 2003;79(10):801–808.
  • Fan S, Ma YX, Wang JA, et al. The cytokine hepatocyte growth factor/scatter factor inhibits apoptosis and enhances DNA repair by a common mechanism involving signaling through phosphatidyl inositol 3' kinase. Oncogene. 2000;19(18):2212–2223.
  • Panse JP, Storb R, Storer B, et al. Prolonged allogeneic marrow engraftment following nonmyeloablative conditioning using 100 cGy total body irradiation and pentostatin before and pharmacological immunosuppression after transplantation. Transplantation. 2005;80(10):1518–1521.
  • Kim K, Pollard JM, Norris AJ, et al. High-throughput screening identifies two classes of antibiotics as radioprotectors: tetracyclines and fluoroquinolones. Clin Cancer Res. 2009;15(23):7238–7245.
  • Epperly MW, Franicola D, Shields D, et al. Screening of antimicrobial agents for in vitro radiation protection and mitigation capacity, including those used in supportive care regimens for bone marrow transplant recipients. In Vivo. 2010;24(1):9–19.
  • Furuta Y, Hunter N, Barkley T, et al. Increase in radioresponse of murine tumors by treatment with indomethacin. Cancer Res. 1988;48(11):3008–3013.
  • Nishiguchi I, Furuta Y, Hunter N, et al. Radioprotection of hematopoietic tissues in mice by indomethacin. Radiat Res. 1990;122(2):188–192.
  • Hofer M, Pospísil M, Pipalová I, et al. Modulation of haemopoietic radiation response of mice by diclofenac in fractionated treatment. Physiol Res. 1996;45(3):213–220.
  • Hofer M, Pospísil M, Pipalová I. Radioprotective properties of flurbiprofen. Folia Biol (Praha). 1996;42(5):267–269.
  • Hofer M, Pospísil M, Znojil V, et al. Meloxicam, a cyclooxygenase 2 inhibitor, supports hematopoietic recovery in gamma-irradiated mice. Radiat Res. 2006;166(3):556–560.
  • Hofer M, Pospíšil M, Dušek L, et al. A single dose of an inhibitor of cyclooxygenase 2, meloxicam, administered shortly after irradiation increases survival of lethally irradiated mice. Radiat Res. 2011;176(2):269–272.
  • Zhou Q, Liao JK. Pleiotropic effects of statins. Basic research and clinical perspectives. Circ J. 2010;74(5):818–826.
  • Fritz G. Targeting the mevalonate pathway for improved anticancer therapy. Curr Cancer Drug Targets. 2009;9(5):626–638.
  • Nübel T, Damrot J, Roos WP, et al. Lovastatin protects human endothelial cells from killing by ionizing radiation without impairing induction and repair of DNA double-strand breaks. Clin Cancer Res. 2006;12(3 Pt 1):933–939.
  • Ostrau C, Hülsenbeck J, Herzog M, et al. Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo. Radiother Oncol. 2009;92(3):492–499.
  • Wang J, Boerma M, Fu Q, et al. Simvastatin ameliorates radiation enteropathy development after localized, fractionated irradiation by a protein C-independent mechanism. Int J Radiat Oncol Biol Phys. 2007;68(5):1483–1490.
  • Mahmoudi M, Gorenne I, Mercer J, et al. Statins use a novel Nijmegen breakage syndrome-1-dependent pathway to accelerate DNA repair in vascular smooth muscle cells. Circ Res. 2008;103(7):717–725.
  • Checker R, Pal D, Patwardhan RS, et al. Modulation of Caspase-3 activity using a redox active vitamin K3 analogue, plumbagin, as a novel strategy for radioprotection. Free Radic Biol Med. 2019;143:560–572.
  • Talwar S, House R, Sundaramurthy S, et al. Inhibition of caspases protects mice from radiation-induced oral mucositis and abolishes the cleavage of RNA-binding protein HuR. J Biol Chem. 2014;289(6):3487–3500.
  • Anscher MS, Thrasher B, Rabbani Z, et al. Antitransforming growth factor-beta antibody 1D11 ameliorates normal tissue damage caused by high-dose radiation. Int J Radiat Oncol Biol Phys. 2006;65(3):876–881.
  • Xavier S, Piek E, Fujii M, et al. Amelioration of radiation-induced fibrosis: inhibition of transforming growth factor-beta signaling by halofuginone. J Biol Chem. 2004;279(15):15167–15176.
  • Anscher MS, Thrasher B, Zgonjanin L, et al. Small molecular inhibitor of transforming growth factor-beta protects against development of radiation-induced lung injury. Int J Radiat Oncol Biol Phys. 2008;71(3):829–837.
  • Floersheim GL. Calcium antagonists protect mice against lethal doses of ionizing radiation. Br J Radiol. 1992;65(779):1025–1029.
  • Nunia V, Sancheti G, Goyal PK. Protection of Swiss albino mice against whole-body gamma irradiation by diltiazem. BJR. 2007;80(950):77–84.
  • Peng R, Zhang W, Zuo Z, et al. Dimethyl sulfoxide, a potent oral radioprotective agent, confers radioprotection of hematopoietic stem and progenitor cells independent of apoptosis. Free Radic Biol Med. 2020;153:1–11.
  • Sémont A, François S, Mouiseddine M, et al. Mesenchymal stem cells increase self-renewal of small intestinal epithelium and accelerate structural recovery after radiation injury. Adv Exp Med Biol. 2006;585:19–30.
  • Prockop DJ, Gregory CA, Spees JL. One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc Natl Acad Sci USA. 2003;100(Suppl 1):11917–11923.
  • Mouiseddine M, François S, Semont A, et al. Human mesenchymal stem cells home specifically to radiation-injured tissues in a non-obese diabetes/severe combined immunodeficiency mouse model. Br J Radiol. 2007;80(Spec No 1):S49–S55.
  • Hu KX, Sun QY, Guo M, et al. The radiation protection and therapy effects of mesenchymal stem cells in mice with acute radiation injury. Br J Radiol. 2010;83(985):52–58.
  • Sémont A, Mouiseddine M, François A, et al. Mesenchymal stem cells improve small intestinal integrity through regulation of endogenous epithelial cell homeostasis. Cell Death Differ. 2010;17(6):952–961.
  • Lange C, Brunswig-Spickenheier B, Cappallo-Obermann H, et al. Radiation rescue: mesenchymal stromal cells protect from lethal irradiation. PLoS One. 2011;6(1):e14486
  • Saha S, Bhanja P, Kabarriti R, et al. Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice. PLoS One. 2011;6(9):e24072.
  • Liu Y, Chen XH, Si YJ, et al. Reconstruction of hematopoietic inductive microenvironment after transplantation of VCAM-1-modified human umbilical cord blood stromal cells. PLoS One. 2012;7(2):e31741
  • Yang X, Balakrishnan I, Torok-Storb B, et al. Marrow stromal cell infusion rescues hematopoiesis in lethally irradiated mice despite rapid clearance after infusion. Adv Hematol. 2012;2012:142530
  • Nagayama H, Misawa K, Tanaka H, et al. Transient hematopoietic stem cell rescue using umbilical cord blood for a lethally irradiated nuclear accident victim. Bone Marrow Transplant. 2002;29(3):197–204.
  • Azzam EI, Yang Z, Li M, et al. The effect of human cord blood therapy on the intestinal tract of lethally irradiated mice: possible use for mass casualties. Int J Radiat Biol. 2010;86(6):467–475.
  • Shim S, Lee SB, Lee JG, et al. Mitigating effects of hUCB-MSCs on the hematopoietic syndrome resulting from total body irradiation. Exp Hematol. 2013;41(4):346–353.e2.
  • Singh VK, Christensen J, Fatanmi OO, et al. Myeloid progenitors: a radiation countermeasure that is effective when initiated days after irradiation. Radiat Res. 2012;177(6):781–791.
  • Davies JE, Walker JT, Keating A. Concise review: Wharton's Jelly: the rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Transl Med. 2017;6(7):1620–1630.
  • Bandekar M, Maurya DK, Sharma D, et al. Xenogeneic transplantation of human WJ-MSCs rescues mice from acute radiation syndrome via Nrf-2-dependent regeneration of damaged tissues. Am J Transplant. 2020;20(8):2044–2057.
  • Singh VK, Seed TM. Pharmacological management of ionizing radiation injuries: current and prospective agents and targeted organ systems. Expert Opin Pharmacother. 2020;21(3):317–337.
  • Bhanja P, Saha S, Kabarriti R, et al. Protective role of R-spondin1, an intestinal stem cell growth factor, against radiation-induced gastrointestinal syndrome in mice. PLoS One. 2009;4(11):e8014.
  • Singh VK, Brown DS, Kao TC. Tocopherol succinate: a promising radiation countermeasure. Int Immunopharmacol. 2009;9(12):1423–1430.
  • Vadhan-Raj S, Goldberg JD, Perales MA, Berger DP, et al. Clinical applications of palifermin: amelioration of oral mucositis and other potential indications. J Cell Mol Med. 2013;17(11):1371–1384.
  • Weiss JF, Landauer MR. Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicology. 2003;189(1-2):1–20.
  • Prockop DJ. Further proof for an unpopular concept: a single cell from bone marrow can serve as a stem cell for both hematopoiesis and osteogenesis. Mol Ther. 2013;21(6):1116–1117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.