252
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Molecular and biochemical investigations of inborn errors of metabolism-altered redox homeostasis in branched-chain amino acid disorders, organic acidurias, and homocystinuria

&
Pages 859-872 | Received 28 Sep 2020, Accepted 13 Jan 2021, Published online: 27 Jan 2021

References

  • Agana M, Frueh J, Kamboj M, et al. Common metabolic disorder (inborn errors of metabolism) concerns in primary care practice. Ann Transl Med. 2018;6(24):469.
  • Kumar A, Palfrey HA, Pathak R, et al. The metabolism and significance of homocysteine in nutrition and health. Nutr Metab. 2017;14:78.
  • Sandlers Y. Amino acids profiling for the diagnosis of metabolic disorders. Chemistry Faculty Publications (IntechOpen). 2019;552. https://engagedscholarship.csuohio.edu/scichem_facpub/552
  • Gilbert-Barness E, Farrell PM. Approach to diagnosis of metabolic diseases. TRD. 2016;1(1):3–22.
  • Ferreira CR, van Karnebeek CDM. Inborn errors of metabolism. Handb Clin Neurol. 2019;162:449–481.
  • Richard E, Gallego-Villar L, Rivera-Barahona A, Oyarzábal A, et al. Altered redox homeostasis in branched-chain amino acid disorders, organic acidurias, and homocystinuria. Oxid Med Cell Longev. 2018;2018:1246069.
  • Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2016; 15(1):71.
  • He L, He T, Farrar S, et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 2017;44(2):532–553.
  • Mc Guire PJ, Parikh A, Diaz GA. Profiling of oxidative stress in patients with inborn errors of metabolism. Mol Genet Metab. 2009;98(1–2):173–180.
  • Ribas GS, Biancini GB, Mescka C, et al. Oxidative stress parameters in urine from patients with disorders of propionate metabolism: a beneficial effect of L:-carnitine supplementation. Cell Mol Neurobiol. 2012;32(1):77–82.
  • Ballatori N, Krance SM, Notenboom S, et al. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem. 2009;390(3):191–214.
  • Salmi H, Leonard JV, Lapatto R. Patients with organic acidaemias have an altered thiol status. Acta Paediatr. 2012;101(11):e505–e508.
  • Pastore A, Martinelli D, Piemonte F, et al. Glutathione metabolism in cobalamin deficiency type C (cblC). J Inherit Metab Dis. 2014;37(1):125–129.
  • Atkuri KR, Cowan TM, Kwan T, et al. Inherited disorders affecting mitochondrial function are associated with glutathione deficiency and hypocitrullinemia. Proc Natl Acad Sci USA. 2009;106(10):3941–3945.
  • Milkovic L, Cipak Gasparovic A, Cindric M, et al. Short overview of ROS as cell function regulators and their implications in therapy concepts. Cells. 2019;8(8):793.
  • Willems Peter HGM, Rossignol R, Dieteren CEJ, et al. Redox homeostasis and mitochondrial dynamics. Cell Metab. 2015;22(2):207–212.
  • Olsen RKJ, Cornelius N, Gregersen N. Redox signalling and mitochondrial stress responses; lessons from inborn errors of metabolism. J Inherit Metab Dis. 2015;38(4):703–719.
  • Stark Z, Tan TY, Chong B, et al. A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders. Genet Med. 2016;18:1090–1096.
  • Yang Y, Wang L, Wang B, et al. Application of next-generation sequencing following tandem mass spectrometry to expand newborn screening for inborn errors of metabolism: a multicenter study. Front Genet. 2019;10:86.
  • Civallero G, de Kremer R, Giugliani R. High-risk screening and diagnosis of inborn errors of metabolism: a practical guide for laboratories. J Inborn Error Metab Screen. 2018;6:1–6.
  • Lee JJY, Wasserman WW, Hoffmann GF, et al. Knowledge base and mini-expert platform for the diagnosis of inborn errors of metabolism. Genet Med. 2018;20(1):151–158.
  • Stenton SL, Kremer LS, Kopajtich R, et al. The diagnosis of inborn errors of metabolism by an integrative "multi-omics" approach: a perspective encompassing genomics, transcriptomics, and proteomics. J Inher Metab Dis. 2020;43(1):25–35.
  • El-Hattab AW. Inborn errors of metabolism. Clin Perinatol. 2015;42(2):413–439.
  • Altimimi HA, Aljawadi HF, Ali EA. Inborn errors of metabolism in children with unexplained developmental delay in Misan, Iraq. Oman Med J. 2019;34(4):297–301.
  • Raghuveer TS, Garg U, Graf WD. Inborn errors of metabolism in infancy and early childhood: an update. Am Fam Phys. 2006;73(11):1981–1990.
  • Biffi A. Hematopoietic stem cell gene therapy for storage disease: current and new indications. Mol Ther. 2017;25(5):1155–1162.
  • Yue WW, Mackinnon S, Bezerra GA. Substrate reduction therapy for inborn errors of metabolism. Emerg Top Life Sci. 2019;3(1):63–73.
  • Forrester SJ, Kikuchi DS, Hernandes MS, et al. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res. 2018;122(6):877–902.
  • Finkel T. Signal transduction by mitochondrial oxidants. J Biol Chem. 2012; 287(7):4434–4440.
  • Sobotta MC, Liou W, Stöcker S, et al. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat Chem Biol. 2015;11(1):64–70.
  • Yin F, Sancheti H, Liu Z, et al. Mitochondrial function in ageing: coordination with signalling and transcriptional pathways. J Physiol. 2016;594(8):2025–2042.
  • AuchèRe F, Rusnak F. What is the ultimate fate of superoxide anion in vivo? J Biol Inorg Chem. 2002;7:664–667.
  • Ng CF, Schafer FQ, Buettner GR, et al. The rate of cellular hydrogen peroxide removal shows dependency on GSH: mathematical insight into in vivo H2O2 and GPx concentrations. Free Radic Res. 2007;41(11):1201–1211.
  • Kaludercic N, Di Lisa F. Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy. Front Cardiovasc Med. 2020;7:12.
  • Wu H, Wei H, Sehgal SA, et al. Mitophagy receptors sense stress signals and couple mitochondrial dynamic machinery for mitochondrial quality control. Free Radic Biol Med. 2016;100:199–209.
  • Boneh A. Signal transduction in inherited metabolic disorders: a model for a possible pathogenetic mechanism. J Inherit Metab Dis. 2015;38(4):729–740.
  • Alcaide P, Merinero B, Ruiz-Sala P, et al. Defining the pathogenicity of creatinine deficiency syndrome. Hum Mutat. 2011;32(3):282–291.
  • Gallego-Villar L, Perez-Cerda C, Perez B, et al. Functional characterization of novel genotypes and cellular oxidative stress studies in propionic acidemia. J Inherit Metab Dis. 2013;36(5):731–740.
  • Richard E, Alvarez-Barrientos A, Perez B, et al. Methylmalonic acidaemia leads to increased production of reactive oxygen species and induction of apoptosis through the mitochondrial/caspase pathway. J Pathol. 2007;213(4):453–461.
  • Richard E, Desviat LR, Ugarte M, et al. Oxidative stress and apoptosis in homocystinuria patients with genetic remethylation defects. J Cell Biochem. 2013;114(1):183–191.
  • Trempolec N, Muñoz JP, Slobodnyuk K, et al. Induction of oxidative metabolism by the p38α/MK2 pathway. Sci Rep. 2017;7(1):11367.
  • Escós A, Risco A, Alsina-Beauchamp D, et al. p38γ and p38δ mitogen activated protein kinases (MAPKs), new stars in the MAPK galaxy. Front Cell Dev Biol. 2016;4:31.
  • Zarubin T, Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res. 2005;15(1):11–18.
  • Papa S, Choy PM, Bubici C. The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene. 2019;38(13):2223–2240.
  • Bogoyevitch MA, Kobe B. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev. 2006;70(4):1061–1095.
  • Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204–7218.
  • Wang C, Youle RJ. The role of mitochondria in apoptosis*. Annu Rev Genet. 2009;43:95–118.
  • Hinchy EC, Gruszczyk AV, Willows R, et al. Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly. J Biol Chem. 2018;293(44):17208–17217.
  • Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017;168(6):960–976.
  • Thomas LW, Ashcroft M. Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria. Cell Mol Life Sci. 2019;76(9):1759–1777.
  • Jacobsen DW, Hannibal L. Redox signaling in inherited diseases of metabolism. Curr Opin Physiol. 2019;9:48–55.
  • Rivera-Barahona A, Alonso-Barroso E, Perez B, et al. Treatment with antioxidants ameliorates oxidative damage in a mouse model of propionic acidemia. Mol Genet Metab. 2017;122(1–2):43–50.
  • Gallego-Villar L, Perez B, Ugarte M, et al. Antioxidants successfully reduce ROS production in propionic acidemia fibroblasts. Biochem Biophys Res Commun. 2014;452(3):457–461.
  • Lopez-Erauskin J, Fourcade S, Galino J, et al. Antioxidants halt axonal degeneration in a mouse model of X-adrenoleukodystrophy. Ann Neurol. 2011;70(1):84–92.
  • Ribas GS, Vargas CR, Wajner M. L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene. 2014;533(2):469–476.
  • Sharma LK, Fang H, Liu J, et al. Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation. Hum Mol Genet. 2011;20(23):4605–4616.
  • Guo J, Lemire BD. The ubiquinone-binding site of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase is a source of superoxide. J Biol Chem. 2003;278(48):47629–47635.
  • Huang J, Lemire BD. Mutations in the C. elegans succinate dehydrogenase iron-sulfur subunit promote superoxide generation and premature aging. J Mol Biol. 2009;387(3):559–569.
  • Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015;30(1):11–26.
  • Smeitink J, van den Heuvel L, DiMauro S. The genetics and pathology of oxidative phosphorylation. Nat Rev Genet. 2001;2(5):342–352.
  • Kolker S, Burgard P, Sauer SW, et al. Current concepts in organic acidurias: understanding intra- and extracerebral disease manifestation. J Inherit Metab Dis. 2013;36(4):635–644.
  • Schapira AH. Mitochondrial disease. Lancet. 2006;368(9529):70–82.
  • Wajner M, Goodman SI. Disruption of mitochondrial homeostasis in organic acidurias: insights from human and animal studies. J Bioenerg Biomembr. 2011;43(1):31–38.
  • Zhang Z, Tsukikawa M, Peng M, et al. Primary respiratory chain disease causes tissue-specific dysregulation of the global transcriptome and nutrient-sensing signaling network. PLOS One. 2013;8(7):e69282.
  • Han JM, Jeong SJ, Park MC, et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell. 2012;149(2):410–424.
  • Anderson KA, Huynh FK, Fisher-Wellman K, et al. SIRT4 is a lysine deacylase that controls leucine metabolism and insulin secretion. Cell Metab. 2017;25(4):838–855.
  • Holeček M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr Metab. 2018;15:33.
  • Garcia-Cazorla A, Oyarzabal A, J, Fort J, et al. Two novel mutations in the BCKDK (branched-chain keto-acid dehydrogenase kinase) gene are responsible for a neurobehavioral deficit in two pediatric unrelated patients. Hum Mutat. 2014;35(4):470–477.
  • Novarino G, El-Fishawy P, Kayserili H, et al. Mutations in BCKD-kinase lead to a potentially treatable form of autism with epilepsy. Science. 2012;338(6105):394–397.
  • Villani GRD, Gallo G, Scolamiero E, et al. "Classical organic acidurias": diagnosis and pathogenesis. Clin Exp Med. 2017;17(3):305–323.
  • Richard E, Rodriguez-Pombo P, Desviat LR, et al. Mitochondrial organic acidurias. Part II: mitochondrial dysfunction. In Palau F, Cadenas S, editors. Mitochondrial pathophysiology. Kerala, India: Research Signpost; 2011. p. 173–191.
  • Oyarzabal A, Martinez-Pardo M, Merinero B, et al. A novel regulatory defect in the branched-chain α-keto acid dehydrogenase complex due to a mutation in the PPM1K gene causes a mild variant phenotype of maple syrup urine disease. Hum Mutat. 2013;34(2):355–362.
  • Grünert SC, Müllerleile S, De Silva L, et al. Propionic acidemia: clinical course and outcome in 55 pediatric and adolescent patients. Orphanet J Rare Dis. 2013;8(1):6.
  • Kölker S, Valayannopoulos V, Burlina AB, et al. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: the evolving clinical phenotype. J Inherit Metab Dis. 2015;38(6):1059–1074.
  • Keyfi F, Talebi S, Varasteh AR. Methylmalonic acidemia diagnosis by laboratory methods. Rep Biochem Mol Biol. 2016;5(1):1–14.
  • Almási T, Guey LT, Lukacs C, et al. Systematic literature review and meta-analysis on the epidemiology of methylmalonic acidemia (MMA) with a focus on MMA caused by methylmalonyl-CoA mutase (mut) deficiency. Orphanet J Rare Dis. 2019;14(1):84.
  • Stepien KM, Heaton R, Rankin S, et al. Evidence of Oxidative Stress and Secondary Mitochondrial Dysfunction in Metabolic and Non-Metabolic Disorders. JCM. 2017;6(7):71.
  • Pettenuzzo LF, Ferreira G. d C, Schmidt AL, et al. Differential inhibitory effects of methylmalonic acid on respiratory chain complex activities in rat tissues. Int J Dev Neurosci. 2006; 24(1):45–52.
  • Luciani A, Devuyst O. Methylmalonyl acidemia: from mitochondrial metabolism to defective mitophagy and disease. Autophagy. 2020;16(6):1159–1161.
  • Mirandola SR, Melo DR, Schuck PF, et al. Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake. J Inherit Metab Dis. 2008;31(1):44–54.
  • Goodman S, Frerman F. Organic acidemias due to defects in lysine oxidation: 2-ketoadipic acidemia and glutaric acidemia. In Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular basis of inherited disease. New York: McGraw-Hill Inc.; 2001. p. 2195–2204.
  • Strauss KA, Puffenberger EG, Robinson DL, et al. Type I glutaric aciduria, part 1: natural history of 77 patients. Am J Med Genet C Semin Med Genet. 2003;121C(1):38–52.
  • Kaplan P, Tatarkova Z, Sivonova MK, et al. Homocysteine and mitochondria in cardiovascular and cerebrovascular systems. IJMS. 2020;21(20):7698.
  • Jacobsen DW. Hyperhomocysteinemia and oxidative stress: time for a reality check? Arterioscler Thromb Vasc Biol. 2000;20(5):1182–1184.
  • Zou CG, Banerjee R. Homocysteine and redox signaling. Antioxid Redox Signal. 2005;7(5–6):547–559.
  • Mudd SH, Levy HL, Kraus JP. Disorders of transsulfuration. In Kinzler K, Ballabio A, Antonarakis SE, Beaudet AL, Vogelstein B, Valle D, editors. The online metabolic and molecular bases of inherited diseases. New York: McGrall-Hill; 2011.
  • Schiff M, Blom HJ. Treatment of inherited homocystinurias. Neuropediatrics. 2012;43(6):295–304.
  • Zuhra K, Augsburger F, Majtan T, et al. Cystathionine-β-synthase: molecular regulation and pharmacological inhibition. Biomolecules. 2020;10(5):697.
  • Faverzani JL, Hammerschmidt TG, Sitta A, et al. Oxidative stress in homocystinuria due to cystathionine ß-synthase deficiency: findings in patients and in animal models. Cell Mol Neurobiol. 2017;37(8):1477–1485.
  • Hoss GRW, Poloni S, Blom HJ, et al. Three main causes of homocystinuria: CBS, cblC and MTHFR deficiency. What do they have in common? J Inborn Errors Metab Screen. 2019;7:e20190007.
  • Richard E, Brasil S, Leal F, et al. Isolated and combined remethylation disorders: biochemical and genetic diagnosis and pathophysiology. J Inborn Errors Metab Screen. 2017;5:1–11.
  • Urv TK, Parisi MA. Newborn screening: beyond the spot. Adv Exp Med Biol. 2017;1031:323–346.
  • Berry SA. Newborn screening. Clin Perinatol. 2015;42(2):441–453.
  • Blau N, Duran M, Gibson KM. Laboratory guide to the methods in biochemical genetics. Berlin/Heidelberg, Germany: Springer; 2008.
  • Liu YJ, McIntyre RL, Janssens GE, et al. Mitochondrial fission and fusion: a dynamic role in aging and potential target for age-related disease. Mech Ageing Dev. 2020;186:111212.
  • Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337(6098):1062–1065.
  • Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol. 2007;83(1):84–92.
  • Mailloux RJ. An update on mitochondrial reactive oxygen species production. Antioxidants. 2020; 9(6):472.
  • Hu F, Liu F. Mitochondrial stress: a bridge between mitochondrial dysfunction and metabolic diseases? Cell Signal. 2011;23(10):1528–1533.
  • Valera-Alberni M, Canto C. Mitochondrial stress management: a dynamic journey. Cell Stress. 2018; 2(10):253–274.
  • He Q, Harris N, Ren J, et al. Mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes. Oxid Med Cell Longev. 2014;2014:654198.
  • Mailloux RJ. Application of mitochondria-targeted pharmaceuticals for the treatment of heart disease. Curr Pharm Des. 2016;22(31):4763–4779.
  • Ni R, Cao T, Xiong S, et al. Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy. Free Radic Biol Med. 2016;90:12–23.
  • Wang W, Karamanlidis G, Tian R. Novel targets for mitochondrial medicine. Sci Transl Med. 2016;8(326):326rv3.
  • Ubah OC, Wallace HM. Cancer therapy: Targeting mitochondria and other sub-cellular organelles. Curr Pharm Des. 2014;20(2):201–222.
  • García-García J, Monistrol-Mula A, Cardellach F, et al. Nutrition, bioenergetics, and metabolic syndrome. Nutrients. 2020;12(9):2785.
  • Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol. 2015;11(1):9–15.
  • Patergnani S, Missiroli S, Marchi S, et al. Mitochondria-associated endoplasmic reticulum membranes microenvironment: targeting autophagic and apoptotic pathways in cancer therapy. Front Oncol. 2015;5:173.
  • Reddy PH. Inhibitors of mitochondrial fission as a therapeutic strategy for diseases with oxidative stress and mitochondrial dysfunction. J Alzheimers Dis. 2014;40(2):245–256.
  • Tachibana M, Amato P, Sparman M, et al. Towards germline gene therapy of inherited mitochondrial diseases. Nature. 2013;493(7434):627–631.
  • Craven L, Tuppen HA, Greggains GD, et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature. 2010;465(7294):82–85.
  • Paull D, Emmanuele V, Weiss KA, et al. Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature. 2013;493(7434):632–637.
  • Harthan AA. An introduction to pharmacotherapy for inborn errors of metabolism. J Pediatr Pharmacol Ther. 2018;23(6):432–446.
  • Strauss KA, Wardley B, Robinson D, et al. Classical maple syrup urine disease and brain development: principles of management and formula design. Mol Genet Metab. 2010;99(4):333–345.
  • Peña-Quintana L, Llarena M, Reyes- Suárez D, et al. Profile of sodium phenylbutyrate granules for the treatment of urea-cycle disorders: patient perspectives. Patient Prefer Adherence. 2017;11:1489–1496.
  • Häberle J, Boddaert N, Burlina A, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 2012;7:32. h]
  • Masurel-Paulet A, Poggi-Bach J, Rolland M-O, et al. NTBC treatment in tyrosinaemia type I: long-term outcome in French patients. J Inherit Metab Dis. 2008;31(1):81–87.
  • Priestley JRC, Alharbi H, Callahan KP, et al. The importance of succinylacetone: tyrosinemia type I presenting with hyperinsulinism and multiorgan failure following normal newborn screening. IJNS. 2020;6(2):39.
  • Christ SE, Moffitt AJ, Peck D, et al. The effects of tetrahydrobiopterin (BH4) treatment on brain function in individuals with phenylketonuria. Neuroimage Clin. 2013;3:539–547.
  • van Vliet D, Anjema K, Jahja R, et al. BH4 treatment in BH4-responsive PKU patients: preliminary data on blood prolactin concentrations suggest increased cerebral dopamine concentrations. Mol Genet Metab. 2015;114(1):29–33.
  • Ogier de Baulny H, Gérard M, Saudubray JM, et al. Remethylation defects: guidelines for clinical diagnosis and treatment. Eur J Pediatr. 1998;157(S2):S77–S83.
  • Morris AAM, Kožich V, Santra S, et al. Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency. J Inherit Metab Dis. 2017;40(1):49–74.
  • Schmidt HHHW, Stocker R, Vollbracht C, et al. Antioxidants in translational medicine. Antioxid Redox Signal. 2015;23(14):1130–1143.
  • Forman HJ, Davies KJA, Ursini F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic Biol Med. 2014;66:24–35.
  • Strauss KA, Williams KB, Carson VJ, et al. Glutaric acidemia type 1: Treatment and outcome of 168 patients over three decades. Mol Genet Metab. 2020;131(3):325–340.
  • Guerreiro G, Mescka CP, Sitta A, et al. Urinary biomarkers of oxidative damage in maple syrup urine disease: the L-carnitine role. Int J Dev Neurosci. 2015;42:10–14.
  • Kumru B, Oztürk Hismi B. Investigation of L-carnitine concentrations in treated patients with maple syrup urine disease. J Pediatr Genet. 2019;8(3):133–136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.