382
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Electrophilic oxysterols: generation, measurement and protein modification

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 416-440 | Received 20 Nov 2020, Accepted 14 Jan 2021, Published online: 24 Feb 2021

References

  • Simons K, Ikonen E. How cells handle cholesterol. Science. 2000;290(5497):1721–1726.
  • van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112–124.
  • Luo J, Yang H, Song BL. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2020;21(4):225–245.
  • Brown AJ, Sharpe LJ, Rogers MJ. Oxysterols: from physiological tuners to pharmacological opportunities. Br J Pharmacol. 2020.
  • Luu W, Sharpe LJ, Capell-Hattam I, et al. Oxysterols: old tale, new twists. Annu Rev Pharmacol Toxicol. 2016;56(1):447–467.
  • Russell DW. Oxysterol biosynthetic enzymes. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2000;1529(1-3):126–135.
  • Björkhem I. Five decades with oxysterols. Biochimie. 2013;95(3):448–454.
  • Girotti AW, Korytowski W. Cholesterol hydroperoxide generation, translocation, and reductive turnover in biological systems. Cell Biochem Biophys. 2017;75(3-4):413–419.
  • Xu L, Porter NA. Free radical oxidation of cholesterol and its precursors: implications in cholesterol biosynthesis disorders. Free Radic Res. 2015;49(7):835–849.
  • Iuliano L. Pathways of cholesterol oxidation via non-enzymatic mechanisms. Chem Phys Lipids. 2011;164(6):457–468.
  • Smith LL. Review of progress in sterol oxidations: 1987–1995. Lipids. 1996;31(5):453–487.
  • Porter NA, Xu L, Pratt D. Reactive sterol electrophiles: mechanisms of formation and reactions with proteins and amino acid nucleophiles. Chem Eur J. 2020;2(2):390–417.
  • Tabas I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest. 2002;110(7):905–911.
  • Zhang X, Bishawi M, Zhang G, et al. Modeling early stage atherosclerosis in a primary human vascular microphysiological system. Nat Commun. 2020;11(1):5426.
  • Wentworth P, Jr., Nieva J, Takeuchi C, et al. Evidence for ozone formation in human atherosclerotic arteries. Science. 2003;302(5647):1053–1056.
  • Seimon TA, Nadolski MJ, Liao X, Magallon J, et al. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab. 2010;12(5):467–482.
  • Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145(3):341–355.
  • Luchetti F, Crinelli R, Cesarini E, et al. Endothelial cells, endoplasmic reticulum stress and oxysterols. Redox Biol. 2017;13:581–587.
  • Li W, Hellsten A, Xu L-H, et al. Foam cell death induced by 7beta-hydroxycholesterol is mediated by labile iron-driven oxidative injury: mechanisms underlying induction of ferritin in human atheroma . Free Radic Biol Med. 2005;39(7):864–875.
  • Brown AJ, Mander EL, Gelissen IC, et al. Cholesterol and oxysterol metabolism and subcellular distribution in macrophage foam cells. Accumulation of oxidized esters in lysosomes. J Lipid Res. 2000;41(2):226–237.
  • Stewart CR, Wilson LM, Zhang Q, et al. Oxidized cholesterol metabolites found in human atherosclerotic lesions promote apolipoprotein C-II amyloid fibril formation. Biochemistry. 2007;46(18):5552–5561.
  • Kawai Y, Saito A, Shibata N, et al. Covalent binding of oxidized cholesteryl esters to protein: implications for oxidative modification of low density lipoprotein and atherosclerosis. J Biol Chem. 2003;278(23):21040–21049.
  • Dietschy JM, Turley SD. Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res. 2004;45(8):1375–1397.
  • Zhang QH, Powers ET, Nieva J, et al. Metabolite-initiated protein misfolding may trigger Alzheimer's disease. Proc Natl Acad Sci U S A. 2004;101(14):4752–4757.
  • Bosco DA, Fowler DM, Zhang Q, et al. Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate alpha-synuclein fibrilization. Nat Chem Biol. 2006;2(5):249–253.
  • Dantas LS, Chaves-Filho AB, Coelho FR, et al. Cholesterol secosterol aldehyde adduction and aggregation of Cu,Zn-superoxide dismutase: potential implications in ALS. Redox Biol. 2018;19:105–115.
  • Chaves-Filho AB, Dantas Pinto IF, Dantas LS, et al. Alterations in lipid metabolism of spinal cord linked to amyotrophic lateral sclerosis. Sci Rep. 2019;9(1):11642.
  • Bieschke J, Zhang Q, Powers ET, et al. Oxidative metabolites accelerate Alzheimer's amyloidogenesis by a two-step mechanism, eliminating the requirement for nucleation. Biochemistry. 2005;44(13):4977–4983.
  • Usui K, Hulleman JD, Paulsson JF, et al. Site-specific modification of Alzheimer's peptides by cholesterol oxidation products enhances aggregation energetics and neurotoxicity. Proc Natl Acad Sci U S A. 2009;106(44):18563–18568.
  • Scheinost JC, Wang H, Boldt GE, et al. Cholesterol seco-sterol-induced aggregation of methylated amyloid-beta peptides-insights into aldehyde-initiated fibrillization of amyloid-beta. Angew Chem Int Ed Engl. 2008;47(21):3919–3922.
  • Dantas LS, Viviani LG, Inague A, et al. Lipid aldehyde hydrophobicity affects apo-SOD1 modification and aggregation. Free Radic Biol Med. 2020;156:157–167.
  • Nieva J, Song B-D, Rogel Joseph K, et al. Cholesterol secosterol aldehydes induce amyloidogenesis and dysfunction of wild-type tumor protein p53. Chem Biol. 2011;18(7):920–927.
  • Genaro-Mattos TC, Appolinario PP, Mugnol KCU, et al. Covalent binding and anchoring of cytochrome c to mitochondrial mimetic membranes promoted by cholesterol carboxyaldehyde. Chem Res Toxicol. 2013;26(10):1536–1544.
  • Speen AM, Kim H-YH, Bauer RN, et al. Ozone-derived oxysterols affect liver X receptor (LXR) signaling: a potential role for lipid-protein adducts. J Biol Chem . 2016;291(48):25192–25206.
  • Duffney PF, Kim H-YH, Porter NA, et al. Ozone-derived oxysterols impair lung macrophage phagocytosis via adduction of some phagocytosis receptors. J Biol Chem. 2020;295(36):12727–12738.
  • Griffiths WJ, Yutuc E, Abdel-Khalik J, et al. Metabolism of non-enzymatically derived oxysterols: clues from sterol metabolic disorders. Free Radic Biol Med. 2019;144:124–133.
  • Mutemberezi V, Guillemot-Legris O, Muccioli GG. Oxysterols: from cholesterol metabolites to key mediators. Prog Lipid Res. 2016;64:152–169.
  • Brown AJ, Jessup W. Oxysterols: sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis. Mol Aspects Med. 2009;30(3):111–122.
  • Shinkyo R, Xu L, Tallman KA, et al. Conversion of 7-dehydrocholesterol to 7-ketocholesterol is catalyzed by human cytochrome P450 7A1 and occurs by direct oxidation without an epoxide intermediate. J Biol Chem. 2011;286(38):33021–33028.
  • Schweizer RA, Zürcher M, Balazs Z, et al. Rapid hepatic metabolism of 7-ketocholesterol by 11beta-hydroxysteroid dehydrogenase type 1: species-specific differences between the rat, human, and hamster enzyme. J Biol Chem. 2004;279(18):18415–18424.
  • Hult M, Elleby B, Shafqat N, et al. Human and rodent type 1 11beta-hydroxysteroid dehydrogenases are 7beta-hydroxycholesterol dehydrogenases involved in oxysterol metabolism. Cell Mol Life Sci. 2004;61(7–8):992–999.
  • Mitic T, Shave S, Semjonous N, et al. 11beta-Hydroxysteroid dehydrogenase type 1 contributes to the balance between 7-keto- and 7-hydroxy-oxysterols in vivo. Biochem Pharmacol. 2013;86(1):146–153.
  • Mitic T, Andrew R, Walker BR, et al. 11beta-Hydroxysteroid dehydrogenase type 1 contributes to the regulation of 7-oxysterol levels in the arterial wall through the inter-conversion of 7-ketocholesterol and 7beta-hydroxycholesterol. Biochimie. 2013;95(3):548–555.
  • Larsson H, Böttiger Y, Iuliano L, et al. In vivo interconversion of 7beta-hydroxycholesterol and 7-ketocholesterol, potential surrogate markers for oxidative stress . Free Radic Biol Med. 2007;43(5):695–701.
  • Diczfalusy U, Nylén H, Elander P, et al. 4β-Hydroxycholesterol, an endogenous marker of CYP3A4/5 activity in humans. Br J Clin Pharmacol. 2011;71(2):183–189.
  • Diczfalusy U, Björkhem I. Still another activity by the highly promiscuous enzyme CYP3A4: 25-hydroxylation of cholesterol. J Lipid Res. 2011;52(8):1447–1449.
  • Honda A, Miyazaki T, Ikegami T, et al. Cholesterol 25-hydroxylation activity of CYP3A. J Lipid Res . 2011;52(8):1509–1516.
  • Umetani M, Ghosh P, Ishikawa T, et al. The cholesterol metabolite 27-hydroxycholesterol promotes atherosclerosis via proinflammatory processes mediated by estrogen receptor alpha. Cell Metab. 2014;20(1):172–182.
  • Baek AE, Yu Y-RA, He S, et al. The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat Commun. 2017;8(1):864.
  • Lund EG, Guileyardo JM, Russell DW. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci U S A. 1999;96(13):7238–7243.
  • Goyal S, Xiao Y, Porter NA, et al. Oxidation of 7-dehydrocholesterol and desmosterol by human cytochrome P450 46A1. J Lipid Res. 2014;55(9):1933–1943.
  • Bjorkhem I. Crossing the barrier: oxysterols as cholesterol transporters and metabolic modulators in the brain. J Intern Med. 2006;260(6):493–508.
  • Yutuc E, Angelini R, Baumert M, et al. Localization of sterols and oxysterols in mouse brain reveals distinct spatial cholesterol metabolism. Proc Natl Acad Sci U S A. 2020;117(11):5749–5760.
  • Diczfalusy U. On the formation and possible biological role of 25-hydroxycholesterol. Biochimie. 2013;95(3):455–460.
  • Lund EG, Kerr TA, Sakai J, et al. cDNA cloning of mouse and human cholesterol 25-hydroxylases, polytopic membrane proteins that synthesize a potent oxysterol regulator of lipid metabolism. J Biol Chem. 1998;273(51):34316–34327.
  • Cyster JG, Dang EV, Reboldi A, et al. 25-Hydroxycholesterols in innate and adaptive immunity. Nat Rev Immunol. 2014;14(11):731–743.
  • Wang S, Li W, Hui H, et al. Cholesterol 25-hydroxylase inhibits SARS-CoV-2 and other coronaviruses by depleting membrane cholesterol. Embo J. 2020;39(21):e106057.
  • Du X, Pham YH, Brown AJ. Effects of 25-hydroxycholesterol on cholesterol esterification and sterol regulatory element-binding protein processing are dissociable: implications for cholesterol movement to the regulatory pool in the endoplasmic reticulum. J Biol Chem. 2004;279(45):47010–47016.
  • Zerbinati C, Iuliano L. Cholesterol and related sterols autoxidation. Free Radic Biol Med. 2017;111(Supplement C):151–155.
  • Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to statins. Cell. 2015;161(1):161–172.
  • Girotti AW, Korytowski W. Cholesterol peroxidation as a special type of lipid oxidation in photodynamic systems. Photochem Photobiol. 2019;95(1):73–82.
  • Girotti AW. Photosensitized oxidation of cholesterol in biological systems: reaction pathways, cytotoxic effects and defense mechanisms. J Photochem Photobiol B. 1992;13(2):105–118.
  • Smith LL. Cholesterol autoxidation. Boston (MA): Springer; 1981.
  • Kulig MJ, Smith LL. Sterol metabolism. XXV. Cholesterol oxidation by singlet molecular oxygen. J Org Chem. 1973;38(20):3639–3642.
  • Smith LL, Teng JI, Kulig MJ, et al. Sterol metabolism. 23. Cholesterol oxidation by radiation-induced processes. J Org Chem. 1973;38(9):1763–1765.
  • Zielinski ZA, Pratt DA. Cholesterol autoxidation revisited: debunking the dogma associated with the most vilified of lipids. J Am Chem Soc. 2016;138(22):6932–6935.
  • Xu L, Davis TA, Porter NA. Rate constants for peroxidation of polyunsaturated fatty acids and sterols in solution and in liposomes. J Am Chem Soc. 2009;131(36):13037–13044.
  • Smith LL. Cholesterol autoxidation 1981–1986. Chem Phys Lipids. 1987;44(2-4):87–125.
  • Brown AJ, Leong SL, Dean RT, et al. 7-Hydroperoxycholesterol and its products in oxidized low density lipoprotein and human atherosclerotic plaque. J Lipid Res. 1997;38(9):1730–1745.
  • Thomas JP, Geiger PG, Maiorino M, Ursini F, et al. Enzymatic reduction of phospholipid and cholesterol hydroperoxides in artificial bilayers and lipoproteins. Biochim Biophys Acta. 1990;1045(3):252–260.
  • Saito Y, Noguchi N. 7-Hydroxycholestrol as a possible biomarker of cellular lipid peroxidation: difference between cellular and plasma lipid peroxidation. Biochem Biophys Res Commun. 2014;446(3):741–744.
  • Yoshida Y, Niki E. Detection of lipid peroxidation in vivo: total hydroxyoctadecadienoic acid and 7-hydroxycholesterol as oxidative stress marker. Free Radic Res. 2004;38(8):787–794.
  • Uemi M, Ronsein GE, Prado FM, et al. Cholesterol hydroperoxides generate singlet molecular oxygen [O(2) ((1)Δ(g))]: near-IR emission, (18)O-labeled hydroperoxides, and mass spectrometry. Chem Res Toxicol. 2011;24(6):887–895.
  • Di Mascio P, Martinez GR, Miyamoto S, et al. Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins. Chem Rev. 2019;119(3):2043–2086.
  • Schaefer EL, Zopyrus N, Zielinski ZAM, et al. On the products of cholesterol autoxidation in phospholipid bilayers and the formation of secosterols derived therefrom. Angew Chem Int Ed Engl. 2020;59(5):2089–2094.
  • Zielinski ZAM, Pratt DA. H-Atom abstraction vs addition: accounting for the diverse product distribution in the autoxidation of cholesterol and its esters. J Am Chem Soc. 2019;141(7):3037–3051.
  • Murphy RC, Johnson KM. Cholesterol, reactive oxygen species, and the formation of biologically active mediators. J Biol Chem. 2008;283(23):15521–15525.
  • Sevanian A, McLeod LL. Cholesterol autoxidation in phospholipid membrane bilayers. Lipids. 1987;22(9):627–636.
  • Lamberson CR, Muchalski H, McDuffee KB, et al. Propagation rate constants for the peroxidation of sterols on the biosynthetic pathway to cholesterol. Chem Phys Lipids. 2017;207(Pt B):51–58.
  • Xu L, Mirnics K, Bowman AB, et al. DHCEO accumulation is a critical mediator of pathophysiology in a Smith-Lemli-Opitz syndrome model. Neurobiol Dis. 2012;45(3):923–929.
  • Saito Y, Yoshida Y, Niki E. Cholesterol is more susceptible to oxidation than linoleates in cultured cells under oxidative stress induced by selenium deficiency and free radicals. FEBS Lett. 2007;581(22):4349–4354.
  • Niki E. Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med. 2009;47(5):469–484.
  • Doleiden FH, Fahrenholtz SR, Lamola AA, et al. Reactivity of cholesterol and some fatty acids toward singlet oxygen. Photochem Photobiol. 1974;20(6):519–521.
  • Krasnovsky AA, Kagan VE, Minin AA. Quenching of singlet oxygen luminescence by fatty acids and lipids: contribution of physical and chemical mechanisms. FEBS Letters. 1983;155(2):233–236.
  • Chacon JN, McLearie J, Sinclair RS. Singlet oxygen yields and radical contributions in the dye-sensitised photo-oxidation in methanol of esters of polyunsaturated fatty acids (oleic, linoleic, linolenic and arachidonic). Photochem Photobiol. 1988;47(5):647–656.
  • Vever-Bizet C, Dellinger M, Brault D, et al. Singlet molecular oxygen quenching by saturated and unsaturated fatty-acids and by cholesterol. Photochem Photobiol. 1989;50(3):321–325.
  • Albro PW, Bilski P, Corbett JT, et al. Photochemical reactions and phototoxicity of sterols: novel self-perpetuating mechanisms for lipid photooxidation. Photochem Photobiol. 1997;66(3):316–325.
  • Schenck GO, Gollnick K, Neumüller OA. Zur photosensibilisierten autoxydation der steroide. darstellung von steroid-hydroperoxyden mittels phototoxischer photosensibilisatoren. Justus Liebigs Ann Chem. 1957;603(1):46–59.
  • Foote CS. Definition of type I and type II photosensitized oxidation. Photochem Photobiol. 1991;54(5):659.
  • Greer A. Christopher Foote's discovery of the role of singlet oxygen [1O2 (1Delta g)] in photosensitized oxidation reactions. Acc Chem Res. 2006;39(11):797–804.
  • Mano CM, Prado FM, Massari J, et al. Excited singlet molecular O-2 ((1)Delta g) is generated enzymatically from excited carbonyls in the dark. Sci Rep. 2015;4(1):5938.
  • Miyamoto S, Martinez GR, Rettori D, et al. Linoleic acid hydroperoxide reacts with hypochlorous acid, generating peroxyl radical intermediates and singlet molecular oxygen. Proc Natl Acad Sci U S A. 2006;103(2):293–298.
  • Miyamoto S, Martinez GR, Martins APB, et al. Direct evidence of singlet molecular oxygen [O2(1Deltag)] production in the reaction of linoleic acid hydroperoxide with peroxynitrite. J Am Chem Soc. 2003;125(15):4510–4517.
  • Miyamoto S, Ronsein GE, Correa TC, et al. Direct evidence of singlet molecular oxygen generation from peroxynitrate, a decomposition product of peroxynitrite. Dalton Trans. 2009;106(29):5720–5729.
  • Miyamoto S, Martinez GR, Medeiros MHG, et al. Singlet molecular oxygen generated from lipid hydroperoxides by the Russell mechanism: studies using 18(O)-labeled linoleic acid hydroperoxide and monomol light emission measurements. J Am Chem Soc. 2003;125(20):6172–6179.
  • Steinbeck MJ, Khan AU, Karnovsky MJ. Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and perylene in a polystyrene film. J Biol Chem. 1993;268(21):15649–15654.
  • Steinbeck MJ, Khan AU, Karnovsky MJ. Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap. J Biol Chem. 1992;267(19):13425–13433.
  • Nickon A, Bagli JF. Reactivity and geometry in allylic systems. I. Stereochemistry of photosensitized oxygenation of monoölefins1,2. J Am Chem Soc. 1961;83(6):1498–1508.
  • Korytowski W, Girotti AW. Singlet oxygen adducts of cholesterol: photogeneration and reductive turnover in membrane systems. Photochem Photobiol. 1999;70(4):484–489.
  • Yamazaki S, Ozawa N, Hiratsuka A, et al. Photogeneration of 3beta-hydroxy-5alpha-cholest-6-ene-5-hydroperoxide in rat skin: evidence for occurrence of singlet oxygen in vivo. Free Radic Biol Med. 1999;27(3–4):301–308.
  • Minami Y, Kawabata K, Kubo Y, et al. Peroxidized cholesterol-induced matrix metalloproteinase-9 activation and its suppression by dietary beta-carotene in photoaging of hairless mouse skin. J Nutr Biochem. 2009;20(5):389–398.
  • Adachi J, Asano M, Naito T, et al. Cholesterol hydroperoxides in erythrocyte membranes of alcoholic patients. Alcohol Clin Exp Res. 1999;23(4 Suppl):96S–100s.
  • Beckwith ALJ, Davies AG, Davison IGE, et al. The mechanisms of the rearrangements of allylic hydroperoxides: 5[a]-hydroperoxy-3[b]-hydroxycholest-6-ene and 7[a]-hydroperoxy-3[b]-hydroxycholest-5-ene. J Chem Soc Perkin Trans 2. 1989;(7):815–824.
  • Pryor WA. Mechanisms of radical formation from reactions of ozone with target molecules in the lung. Free Radic Biol Med. 1994;17(5):451–465.
  • Mudway IS, Kelly FJ. Ozone and the lung: a sensitive issue. Mol Aspects Med. 2000;21(1-2):1–48.
  • Pulfer MK, Murphy RC. Formation of biologically active oxysterols during ozonolysis of cholesterol present in lung surfactant. J Biol Chem. 2004;279(25):26331–26338.
  • Gumulka J, Smith LL. Ozonization of cholesterol. J Am Chem Soc. 1983;105(7):1972–1979.
  • Takayasu BS, Martins IR, Garnique AMB, et al. Biological effects of an oxyphytosterol generated by beta-Sitosterol ozonization. Arch Biochem Biophys. 2020;696:108654.
  • Martins IR, Onuki J, Miyamoto S, et al. Characterization of oxyphytosterols generated by β-sitosterol ozonization. Arch Biochem Biophys. 2020;689:108472.
  • Thomas JP, Maiorino M, Ursini F, et al. Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. In situ reduction of phospholipid and cholesterol hydroperoxides. J Biol Chem. 1990;265(1):454–461.
  • Korytowski W, Geiger PG, Girotti AW. Enzymatic reducibility in relation to cytotoxicity for various cholesterol hydroperoxides. Biochemistry. 1996;35(26):8670–8679.
  • Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 2018;172(3):409.e21–422.e21.
  • Cozza G, Rossetto M, Bosello-Travain V, et al. Glutathione peroxidase 4-catalyzed reduction of lipid hydroperoxides in membranes: the polar head of membrane phospholipids binds the enzyme and addresses the fatty acid hydroperoxide group toward the redox center. Free Radic Biol Med. 2017;112:1–11.
  • Yoo SE, Chen L, Na R, et al. Gpx4 ablation in adult mice results in a lethal phenotype accompanied by neuronal loss in brain. Free Radic Biol Med. 2012;52(9):1820–1827.
  • Dixon Scott J, Lemberg Kathryn M, Lamprecht Michael R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–1072.
  • Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180–1191.
  • Friedmann Angeli JP, Miyamoto S, Schulze A. Ferroptosis: the greasy side of cell death. Chem Res Toxicol. 2019;32(3):362–369.
  • Vila A, Korytowski W, Girotti AW. Dissemination of peroxidative stress via intermembrane transfer of lipid hydroperoxides: model studies with cholesterol hydroperoxides. Arch Biochem Biophys. 2000;380(1):208–218.
  • Vila A, Korytowski W, Girotti AW. Spontaneous intermembrane transfer of various cholesterol-derived hydroperoxide species: kinetic studies with model membranes and cells. Biochemistry. 2001;40(48):14715–14726.
  • Girotti AW. Translocation as a means of disseminating lipid hydroperoxide-induced oxidative damage and effector action. Free Radic Biol Med. 2008;44(6):956–968.
  • Kriska T, Levchenko VV, Korytowski W, et al. Intracellular dissemination of peroxidative stress. Internalization, transport, and lethal targeting of a cholesterol hydroperoxide species by sterol carrier protein-2-overexpressing hepatoma cells. J Biol Chem. 2006;281(33):23643–23651.
  • Korytowski W, Wawak K, Pabisz P, et al. Macrophage mitochondrial damage from StAR transport of 7-hydroperoxycholesterol: implications for oxidative stress-impaired reverse cholesterol transport . FEBS Lett. 2014;588(1):65–70.
  • Rodriguez-Agudo D, Ren S, Wong E, et al. Intracellular cholesterol transporter StarD4 binds free cholesterol and increases cholesteryl ester formation. J Lipid Res. 2008;49(7):1409–1419.
  • Soccio RE, Adams RM, Romanowski MJ, et al. The cholesterol-regulated StarD4 gene encodes a StAR-related lipid transfer protein with two closely related homologues, StarD5 and StarD6. Proc Natl Acad Sci U S A. 2002;99(10):6943–6948.
  • Calderon-Dominguez M, Gil G, Medina MA, et al. The StarD4 subfamily of steroidogenic acute regulatory-related lipid transfer (START) domain proteins: new players in cholesterol metabolism. Int J Biochem Cell Biol. 2014;49:64–68.
  • Korytowski W, Wawak K, Pabisz P, et al. Impairment of macrophage cholesterol efflux by cholesterol hydroperoxide trafficking: implications for atherogenesis under oxidative stress. Arterioscler Thromb Vasc Biol. 2015;35(10):2104–2113.
  • Adachi J, Asano M, Naito T, et al. Chemiluminescent determination of cholesterol hydroperoxides in human erythrocyte membrane. Lipids. 1998;33(12):1235–1240.
  • Barr DP, Mason RP. Mechanism of radical production from the reaction of cytochrome c with organic hydroperoxides. An ESR spin trapping investigation. J Biol Chem. 1995;270(21):12709–12716.
  • Nantes IL, Faljoni-Alário A, Nascimento OR, et al. Modifications in heme iron of free and vesicle bound cytochrome c by tert-butyl hydroperoxide: a magnetic circular dichroism and electron paramagnetic resonance investigation. Free Radic Biol Med. 2000;28(5):786–796.
  • Belikova NA, Tyurina YY, Borisenko G, et al. Heterolytic reduction of fatty acid hydroperoxides by cytochrome c/cardiolipin complexes: antioxidant function in mitochondria. J Am Chem Soc. 2009;131(32):11288–11289.
  • Miyamoto S, Nantes IL, Faria PA, et al. Cytochrome c-promoted cardiolipin oxidation generates singlet molecular oxygen. Photochem Photobiol Sci. 2012;11(10):1536–1546.
  • Genaro-Mattos TC, Queiroz RF, Cunha D, et al. Cytochrome c reacts with cholesterol hydroperoxides to produce lipid- and protein-derived radicals. Biochemistry. 2015;54(18):2841–2850.
  • Ronsein GE, de Oliveira MC, Medeiros MH, et al. DNA strand breaks and base modifications induced by cholesterol hydroperoxides. Free Radic Res. 2011;45(3):266–275.
  • Chiemezie C, Greer A. Secondary dark reactions following photodynamic treatment are more damaging than previously thought. Photochem Photobiol. 2019;95(1):460–461.
  • Frankel EN. Secondary products of lipid oxidation. Chem Phys Lipids. 1987;44(2-4):73–85.
  • Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11(1):81–128.
  • Kawai Y, Takeda S, Terao J. Lipidomic analysis for lipid peroxidation-derived aldehydes using gas chromatography-mass spectrometry. Chem Res Toxicol. 2007;20(1):99–107.
  • Guéraud F, Atalay M, Bresgen N, et al. Chemistry and biochemistry of lipid peroxidation products. Free Radic Res. 2010;44(10):1098–1124.
  • Spickett CM. The lipid peroxidation product 4-hydroxy-2-nonenal: advances in chemistry and analysis. Redox Biol. 2013;1(1):145–152.
  • Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis. 2000;21(3):361–370.
  • Martinez GR, Loureiro APM, Marques SA, et al. Oxidative and alkylating damage in DNA. Mutat Res. 2003;544(2-3):115–127.
  • Uchida K. Aldehyde adducts generated during lipid peroxidation modification of proteins. Free Radic Res. 2015;49(7):896–904.
  • Vasil'ev YV, Tzeng SC, Huang L, et al. Protein modifications by electrophilic lipoxidation products: adduct formation, chemical strategies and tandem mass spectrometry for their detection and identification. Mass Spectrom Rev. 2014;33(3):157–182.
  • Aldini G, Domingues MR, Spickett CM, et al. Protein lipoxidation: detection strategies and challenges. Redox Biol. 2015;5:253–266.
  • Beavers WN, Rose KL, Galligan JJ, et al. Protein modification by endogenously generated lipid electrophiles: mitochondria as the source and target. ACS Chem Biol. 2017;12(8):2062–2069.
  • Smith LL. Oxygen, oxysterols, ouabain, and ozone: a cautionary tale. Free Radic Biol Med. 2004;37(3):318–324.
  • Brinkhorst J, Nara SJ, Pratt DA. Hock cleavage of cholesterol 5 alpha-hydroperoxide: an ozone-free pathway to the cholesterol ozonolysis products identified in arterial plaque and brain tissue. J Am Chem Soc. 2008;130(37):12224–12225.
  • Uemi M, Ronsein GE, Miyamoto S, et al. Generation of cholesterol carboxyaldehyde by the reaction of singlet molecular oxygen [O2 (1Delta(g))] as well as ozone with cholesterol. Chem Res Toxicol. 2009;22(5):875–884.
  • Tomono S, Miyoshi N, Shiokawa H, et al. Formation of cholesterol ozonolysis products in vitro and in vivo through a myeloperoxidase-dependent pathway. J Lipid Res. 2011;52(1):87–97.
  • Tomono S, Miyoshi N, Sato K, et al. Formation of cholesterol ozonolysis products through an ozone-free mechanism mediated by the myeloperoxidase-H2O2-chloride system. Biochem Biophys Res Commun. 2009;383(2):222–227.
  • Pryor WA, Wang K, Bermudez E. Cholesterol ozonation products as biomarkers for ozone exposure in rats. Biochem Biophys Res Commun. 1992;188(2):618–623.
  • Karu K, Hornshaw M, Woffendin G, et al. Liquid chromatography-mass spectrometry utilizing multi-stage fragmentation for the identification of oxysterols. J Lipid Res. 2007;48(4):976–987.
  • LoPachin RM, Geohagen BC, Nordstroem LU. Mechanisms of soft and hard electrophile toxicities. Toxicology. 2019;418:62–69.
  • Windsor K, Genaro-Mattos TC, Miyamoto S, et al. Assay of protein and peptide adducts of cholesterol ozonolysis products by hydrophobic and click enrichment methods. Chem Res Toxicol. 2014;27(10):1757–1768.
  • Cygan NK, Scheinost JC, Butters TD, et al. Adduction of cholesterol 5,6-secosterol aldehyde to membrane-bound myelin basic protein exposes an immunodominant epitope. Biochemistry. 2011;50(12):2092–2100.
  • Nieva J, Shafton A, Altobell LJ, et al. Lipid-derived aldehydes accelerate light chain amyloid and amorphous aggregation. Biochemistry. 2008;47(29):7695–7705.
  • Scheinost JC, Witter DP, Boldt GE, et al. Cholesterol secosterol adduction inhibits the misfolding of a mutant prion protein fragment that induces neurodegeneration. Angew Chem Int Ed Engl. 2009;48(50):9469–9472.
  • Lai Y-L, Tomono S, Miyoshi N, et al. Inhibition of endothelial- and neuronal-type, but not inducible-type, nitric oxide synthase by the oxidized cholesterol metabolite secosterol aldehyde: implications for vascular and neurodegenerative diseases. J Clin Biochem Nutr. 2012;50(1):84–89.
  • Wang J, Gu BJ, Masters CL, et al. A systemic view of Alzheimer disease - insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol. 2017;13(10):612–623.
  • Necula M, Chirita CN, Kuret J. Rapid anionic micelle-mediated alpha-synuclein fibrillization in vitro. J Biol Chem. 2003;278(47):46674–46680.
  • Furukawa Y, Tokuda E. Does wild-type Cu/Zn-superoxide dismutase have pathogenic roles in amyotrophic lateral sclerosis? Transl Neurodegener. 2020;9(1):33.
  • Weil MT, Möbius W, Winkler A, et al. Loss of myelin basic protein function triggers myelin breakdown in models of demyelinating diseases. Cell Rep. 2016;16(2):314–322.
  • Howlett GJ, Ryan TM, Griffin MDW. Lipid-apolipoprotein interactions in amyloid fibril formation and relevance to atherosclerosis. Biochim Biophys Acta. 2019;1867(5):502–507.
  • Silva JL, Rangel LP, Costa DCF, et al. Expanding the prion concept to cancer biology: dominant-negative effect of aggregates of mutant p53 tumour suppressor. Biosci Rep. 2013;33(4):e00054.
  • Miyoshi N, Iuliano L, Tomono S, et al. Implications of cholesterol autoxidation products in the pathogenesis of inflammatory diseases. Biochem Biophys Res Commun. 2014;446(3):702–708.
  • Alvarez-Paggi D, Hannibal L, Castro MA, et al. Multifunctional cytochrome c: learning new tricks from an old dog. Chem Rev. 2017;117(21):13382–13460.
  • Förstermann U, Münzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113(13):1708–1714.
  • Moreno-López B, González-Forero D. Nitric oxide and synaptic dynamics in the adult brain: physiopathological aspects. Rev Neurosci. 2006;17(3):309–357.
  • Miyoshi N. Biochemical properties of cholesterol aldehyde secosterol and its derivatives. J Clin Biochem Nutr. 2018;62(2):107–114.
  • Holick MF, MacLaughlin JA, Clark MB, et al. Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science. 1980;210(4466):203–205.
  • Tint GS, Seller M, Hughes-Benzie R, et al. Markedly increased tissue concentrations of 7-dehydrocholesterol combined with low levels of cholesterol are characteristic of the Smith-Lemli-Opitz syndrome. J Lipid Res. 1995;36(1):89–95.
  • Irons M, Elias ER, Salen G, et al. Defective cholesterol biosynthesis in Smith-Lemli-Opitz syndrome. Lancet. 1993;341(8857):1414.
  • Porter FD, Herman GE. Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res. 2011;52(1):6–34.
  • Xu L, Korade Z, Porter NA. Oxysterols from free radical chain oxidation of 7-dehydrocholesterol: product and mechanistic studies. J Am Chem Soc. 2010;132(7):2222–2232.
  • Xu L, Korade Z, Rosado DA, et al. An oxysterol biomarker for 7-dehydrocholesterol oxidation in cell/mouse models for Smith-Lemli-Opitz syndrome. J Lipid Res. 2011;52(6):1222–1233.
  • Meljon A, Watson GL, Wang Y, et al. Analysis by liquid chromatography-mass spectrometry of sterols and oxysterols in brain of the newborn Dhcr7(Δ3-5/T93M) mouse: a model of Smith-Lemli-Opitz syndrome. Biochem Pharmacol. 2013;86(1):43–55.
  • Sever N, Mann RK, Xu L, et al. Endogenous B-ring oxysterols inhibit the Hedgehog component Smoothened in a manner distinct from cyclopamine or side-chain oxysterols. Proc Natl Acad Sci Usa. 2016;113(21):5904–5909.
  • Tallman KA, Kim HH, Korade Z, et al. Probes for protein adduction in cholesterol biosynthesis disorders: alkynyl lanosterol as a viable sterol precursor. Redox Biol. 2017;12:182–190.
  • Windsor K, Genaro-Mattos TC, Kim H-YH, et al. Probing lipid-protein adduction with alkynyl surrogates: application to Smith-Lemli-Opitz syndrome. J Lipid Res. 2013;54(10):2842–2850.
  • Paillasse MR, Saffon N, Gornitzka H, et al. Surprising unreactivity of cholesterol-5,6-epoxides towards nucleophiles. J Lipid Res. 2012;53(4):718–725.
  • Lemaire-Ewing S, Prunet C, Montange T, et al. Comparison of the cytotoxic, pro-oxidant and pro-inflammatory characteristics of different oxysterols. Cell Biol Toxicol. 2005;21(2):97–114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.