472
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Detection and structural analysis of lipid-derived radicals in vitro and in vivo

& ORCID Icon
Pages 441-449 | Received 28 Oct 2020, Accepted 14 Jan 2021, Published online: 08 Feb 2021

References

  • Ayala A, Munoz MF, Arguelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438.
  • West XZ, Malinin NL, Merkulova AA, et al. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature. 2010;467(7318):972–976.
  • Stocker R, Keaney JF. Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84(4):1381–1478.
  • Reed TT. Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med. 2011;51(7):1302–1319.
  • Pratt DA, Mills JH, Porter NA. Theoretical calculations of carbon-oxygen bond dissociation enthalpies of peroxyl radicals formed in the autoxidation of lipids. J Am Chem Soc. 2003;125(19):5801–5810.
  • Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 2011;111(10):5944–5972.
  • Maillard B, Ingold KU, Scaiano JC. Rate constants for the reactions of free-radicals with oxygen in solution. J Am Chem Soc. 1983;105(15):5095–5099.
  • Xu LB, Davis TA, Porter NA. Rate constants for peroxidation of polyunsaturated fatty acids and sterols in solution and in liposomes. J Am Chem Soc. 2009;131(36):13037–13044.
  • Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015;30(1):11–26.
  • Kitaguchi H, Ohkubo K, Ogo S, et al. Direct ESR detection of pentadienyl radicals and peroxyl radicals in lipid peroxidation: mechanistic insight into regioselective oxygenation in lipoxygenases. J Am Chem Soc. 2005;127(18):6605–6609.
  • Janzen EG, Blackburn BJ. Detection and identification of short-lived free radicals by electron spin resonance trapping techniques (spin trapping) - photolysis of organolead, -tin, and -mercury compounds. J Am Chem Soc. 1969;91(16):4481–4490.
  • Finkelstein E, Rosen GM, Rauckman EJ. Spin trapping - kinetics of the reaction of superoxide and hydroxyl radicals with nitrones. J Am Chem Soc. 1980;102(15):4994–4999.
  • Barr DP, Gunther MR, Deterding LJ, et al. ESR spin-trapping of a protein-derived tyrosyl radical from the reaction of cytochrome c with hydrogen peroxide. J Biol Chem. 1996;271(26):15498–15503.
  • Augusto O, Beilan HS, Demontellano PRO. The catalytic mechanism of cytochrome-P-450 - spin-trapping evidence for one-electron substrate oxidation. J Biol Chem. 1982;257(19):1288–1295.
  • Buettner GR. Spin trapping: ESR parameters of spin adducts. Free Radic Biol Med. 1987;3(4):259–303.
  • Schmid P, Ingold KU. Kinetic applications of electron-paramagnetic resonance spectroscopy.31. Rate constants for spin trapping.1. Primary alkyl radicals. J Am Chem Soc. 1978;100(8):2493–2500.
  • Maeda Y, Ingold KU. Kinetic applications of electron-paramagnetic resonance spectroscopy.34. Rate constants for spin trapping.2. Secondary alkyl radicals. J Am Chem Soc. 1979;101(17):4975–4981.
  • Ramos CL, Pou S, Britigan BE, et al. Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes. J Biol Chem. 1992;267(12):8307–8312.
  • Zweier JL, Kuppusamy P, Williams R, et al. Measurement and characterization of postischemic free-radical generation in the isolated perfused heart. J Biol Chem. 1989;264(32):18890–18895.
  • Zweier JL, Kuppusamy P, Lutty GA. Measurement of endothelial cell free radical generation: evidence for a central mechanism of free radical injury in postischemic tissues. Proc Natl Acad Sci U S A. 1988;85(11):4046–4050.
  • Yue Qian S, Kadiiska MB, Guo Q, et al. A novel protocol to identify and quantify all spin trapped free radicals from in vitro/in vivo interaction of HO(.-) and DMSO: LC/ESR, LC/MS, and dual spin trapping combinations. Free Radic Biol Med. 2005;38(1):125–135.
  • Dikalova AE, Kadiiska MB, Mason RP. An in vivo ESR spin-trapping study: free radical generation in rats from formate intoxication-role of the Fenton reaction. Proc Natl Acad Sci U S A. 2001;98(24):13549–13553.
  • Yamada K, Yamamiya I, Utsumi H. In vivo detection of free radicals induced by diethylnitrosamine in rat liver tissue. Free Radic Res. 2006;40:S151–S151.
  • Mason RP. Using anti-5,5-dimethyl-1-pyrroline N-oxide (anti-DMPO) to detect protein radicals in time and space with immuno-spin trapping. Free Radic Biol Med. 2004;36(10):1214–1223.
  • Ramirez DC, Mejiba SE, Mason RP. Immuno-spin trapping of DNA radicals. Nat Methods. 2006;3(2):123–127.
  • Ramirez DC, Gomez-Mejiba SE, Mason RP. Immuno-spin trapping analyses of DNA radicals. Nat Protoc. 2007;2(3):512–522.
  • Towner RA, Smith N, Saunders D, et al. In vivo imaging of immuno-spin trapped radicals with molecular magnetic resonance imaging in a diabetic mouse model. Diabetes. 2012;61(10):2405–2413.
  • Towner RA, Smith N, Saunders D, et al. Mason RP and others. In vivo detection of free radicals using molecular MRI and immuno-spin trapping in a mouse model for amyotrophic lateral sclerosis. Free Radic Biol Med. 2013;63:351–360.
  • Towner RA, Garteiser P, Bozza F, et al. In vivo detection of free radicals in mouse septic encephalopathy using molecular MRI and immuno-spin trapping. Free Radic Biol Med. 2013;65:828–837.
  • Iwahashi H, Parker CE, Mason RP, et al. Combined liquid chromatography/electron paramagnetic resonance spectrometry/electrospray ionization mass spectrometry for radical identification. Anal Chem. 1992;64(19):2244–2252.
  • Yue Qian S, Tomer KB, Yue GH, et al. Characterization of the initial carbon-centered pentadienyl radical and subsequent radicals in lipid peroxidation: identification via on-line high performance liquid chromatography/electron spin resonance and mass spectrometry. Free Radic Biol Med. 2002;33(7):998–1009.
  • Qian SY, Yue GH, Tomer KB, et al. Identification of all classes of spin-trapped carbon-centered radicals in soybean lipoxygenase-dependent lipid peroxidations of omega-6 polyunsaturated fatty acids via LC/ESR, LC/MS, and tandem MS. Free Radic Biol Med. 2003;34(8):1017–1028.
  • Qian SY, Guo Q, Mason RP. Identification of spin trapped carbon-centered radicals in soybean lipoxygenase-dependent peroxidations of omega-3 polyunsaturated fatty acids by LC/ESR, LC/MS, and tandem MS. Free Radic Biol Med. 2003;35(1):33–44.
  • Shan Z, Yu QF, Purwaha P, et al. A combination study of spin-trapping, LC/ESR and LC/MS on carbon-centred radicals formed from lipoxygenase-catalysed peroxidation of eicosapentaenoic acid. Free Radic Res. 2009;43(1):13–27.
  • Yu QF, Purwaha P, Ni KY, et al. Characterization of novel radicals from COX-catalyzed arachidonic acid peroxidation. Free Radic Biol Med. 2009;47(5):568–576.
  • Iwahashi H, Kumamoto K, Hirai T. The formation of the 7-carboxyheptyl radical from 13-hydroperoxy-9,11-octadecadienoic acid catalyzed by hemoglobin and myoglobin under anaerobic conditions. J Biochem. 2003;133(5):679–685.
  • Iwahashi H. Identification of the several new radicals formed in the reaction mixture of oxidized linoleic acid with ferrous ions using HPLC-ESR and HPLC-ESR-MS. Free Radic Res. 2003;37(9):939–945.
  • Gu Y, Xu Y, Law B, et al. The first characterization of free radicals formed from cellular COX-catalyzed peroxidation. Free Radic Biol Med. 2013;57:49–60.
  • Reis A, Domingues P, Ferrer-Correia AJ, et al. Identification of free radicals of glycerophosphatidylcholines containing omega-6 fatty acids using spin trapping coupled with tandem mass spectrometry. Free Radic Res. 2007;41(4):432–443.
  • Simoes C, Domingues P, Domingues MR. Identification of free radicals in oxidized and glycoxidized phosphatidylethanolamines by spin trapping combined with tandem mass spectrometry. Rapid Commun Mass Spectrom. 2012;26(8):931–939.
  • Genaro-Mattos TC, Queiroz RF, Cunha D, et al. Cytochrome c reacts with cholesterol hydroperoxides to produce lipid- and protein-derived radicals. Biochemistry. 2015;54(18):2841–2850.
  • Oleynik P, Ishihara Y, Cosa G. Design and synthesis of a BODIPY-alpha-tocopherol adduct for use as an off/on fluorescent antioxidant indicator. J Am Chem Soc. 2007;129(7):1842–1843.
  • Krumova K, Oleynik P, Karam P, et al. Phenol-based lipophilic fluorescent antioxidant indicators: a rational approach. J Org Chem. 2009;74(10):3641–3651.
  • Khatchadourian A, Krumova K, Boridy S, et al. Molecular imaging of lipid peroxyl radicals in living cells with a BODIPY-alpha-tocopherol adduct. Biochemistry. 2009;48(24):5658–5668.
  • Krumova K, Friedland S, Cosa G. How lipid unsaturation, peroxyl radical partitioning, and chromanol lipophilic tail affect the antioxidant activity of α-tocopherol: direct visualization via high-throughput fluorescence studies conducted with fluorogenic α-tocopherol analogues . J Am Chem Soc. 2012;134(24):10102–10113.
  • Drummen GP, van Liebergen LC, Op den Kamp JA, et al. C11-BODIPY(581/591), an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radic Biol Med. 2002;33(4):473–490.
  • Yoshida Y, Shimakawa S, Itoh N, et al. Action of DCFH and BODIPY as a probe for radical oxidation in hydrophilic and lipophilic domain. Free Radic Res. 2003;37(8):861–872.
  • Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–1072.
  • Torii S, Shintoku R, Kubota C, et al. An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem J. 2016;473(6):769–777.
  • Tarangelo A, Magtanong L, Bieging-Rolett KT, et al. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep. 2018;22(3):569–575.
  • Gao M, Yi J, Zhu J, et al. Role of mitochondria in ferroptosis. Mol Cell. 2019;73(2):354–363 e3.
  • Krumova K, Greene LE, Cosa G. Fluorogenic α-tocopherol analogue for monitoring the antioxidant status within the inner mitochondrial membrane of live cells . J Am Chem Soc. 2013;135(45):17135–17143.
  • Prime TA, Forkink M, Logan A, et al. Smith RA and others. A ratiometric fluorescent probe for assessing mitochondrial phospholipid peroxidation within living cells. Free Radic Biol Med. 2012;53(3):544–553.
  • Chateauneuf J, Lusztyk J, Ingold KU. Absolute rate constants for the reactions of some carbon-centered radicals with 2,2,6,6-tetramethylpiperidine-N-oxyl. J Org Chem. 1988;53(8):1629–1632.
  • Allen NS. Recent advances in the photooxidation and stabilization of polymers. Chem Soc Rev. 1986;15(3):373–404.
  • Goldstein S, Samuni A. Biologically relevant chemistry of nitroxides. Stable radicals fundamentals and applied aspects of odd-electron compounds. Chichester, UK: John Wiley&Sons; 2010.
  • Kokorin AI, editor. Nitroxides - theory, experiment and applications. Rijeka, Croatia: InTech; 2012.
  • Bagryanskaya EG, Marque SRA. Scavenging of organic C-centered radicals by nitroxides. Chem Rev. 2014;114(9):5011–5056.
  • Bowry VW, Ingold KU. Kinetics of nitroxide radical trapping.2. Structural effects. J Am Chem Soc. 1992;114(13):4992–4996.
  • Beckwith ALJ, Bowry VW, Ingold KU. Kinetics of nitroxide radical trapping.1. Solvent effects. J Am Chem Soc. 1992;114(13):4983–4992.
  • Sobek J, Martschke R, Fischer H. Entropy control of the cross-reaction between carbon-centered and nitroxide radicals. J Am Chem Soc. 2001;123(12):2849–2857.
  • Skene WG, Scaiano JC, Listigovers NA, et al. Rate constants for the trapping of various carbon-centered radicals by nitroxides: Unimolecular initiators for living free radical polymerization. Macromolecules. 2000;33(14):5065–5072.
  • Kothe T, Marque S, Martschke R, et al. Radical reaction kinetics during homolysis of N-alkoxyamines: verification of the persistent radical effect. J Chem Soc, Perkin Trans 2. 1998;7:1553–1559.
  • Lebedeva NV, Zubenko DP, Bagryanskaya EG, et al. Switched external magnetic field CIDNP studies of coupling reaction of carbon-centered radicals with TEMPO. Phys Chem Chem Phys. 2004;6(9):2254–2259.
  • Bowry VW, Lusztyk J, Ingold KU. Calibration of a new horologery of fast radical clocks - ring-opening rates for ring-alkyl-substituted and alpha-alkyl-substituted cyclopropylcarbinyl radicals and for the bicyclo[2.1.0]Pent-2-Yl radical. J Am Chem Soc. 1991;113(15):5687–5698.
  • Gryn'ova G, Ingold KU, Coote ML. New insights into the mechanism of amine/nitroxide cycling during the hindered amine light stabilizer inhibited oxidative degradation of polymers. J Am Chem Soc. 2012;134(31):12979–12988.
  • Haidasz EA, Meng D, Amorati R, et al. Acid is key to the radical-trapping antioxidant activity of nitroxides. J Am Chem Soc. 2016;138(16):5290–5298.
  • Wright PJ, English AM. Scavenging with TEMPO* to identify peptide- and protein-based radicals by mass spectrometry: advantages of spin scavenging over spin trapping . J Am Chem Soc. 2003;125(28):8655–8665.
  • Kinoshita Y, Yamada KI, Yamasaki T, et al. Development of novel nitroxyl radicals for controlling reactivity with ascorbic acid. Free Radic Res. 2009;43(6):565–571.
  • Matsuoka Y, Ohkubo K, Yamasaki T, et al. A profluorescent nitroxide probe for ascorbic acid detection and its application to quantitative analysis of diabetic rat plasma. RSC Adv. 2016;6(65):60907–60915.
  • Sakai K, Yamada K, Yamasaki T, et al. Effective 2,6-substitution of piperidine nitroxyl radical by carbonyl compound. Tetrahedron. 2010;66(13):2311–2315.
  • Yamasaki T, Ito Y, Mito F, et al. Structural concept of nitroxide as a lipid peroxidation inhibitor. J Org Chem. 2011;76(10):4144–4148.
  • Green SA, Simpson DJ, Zhou G, et al. Intramolecular quenching of excited singlet-states by stable nitroxyl radicals. J Am Chem Soc. 1990;112(20):7337–7346.
  • Ishii K, Hirose Y, Fujitsuka H, et al. Time-resolved EPR, fluorescence, and transient absorption studies on phthalocyaninatosilicon covalently linked to one or two TEMPO radicals. J Am Chem Soc. 2001;123(4):702–708.
  • Colvin MT, Giacobbe EM, Cohen B, et al. Competitive electron transfer and enhanced intersystem crossing in photoexcited covalent TEMPO-perylene-3,4:9,10-bis(dicarboximide) dyads: unusual spin polarization resulting from the radical-triplet interaction. J Phys Chem A. 2010;114(4):1741–1748.
  • Blinco JP, Fairfull-Smith KE, Morrow BJ, et al. Profluorescent nitroxides as sensitive probes of oxidative change and free radical reactions. Aust J Chem. 2011;64(4):373–389.
  • Yamada K, Mito F, Matsuoka Y, et al. Fluorescence probes to detect lipid-derived radicals. Nat Chem Biol. 2016;12(8):608–613.
  • Enoki M, Shinto S, Matsuoka Y, et al. Lipid radicals cause light-induced retinal degeneration. Chem Commun (Camb)). 2017;53(79):10922–10925.
  • Matsuoka Y, Izumi Y, Takahashi M, et al. Method for structural determination of lipid-derived radicals. Anal Chem. 2020;92(10):6993–7002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.