311
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Redox reactions of organoselenium compounds: Implication in their biological activity

&
Pages 873-886 | Received 18 Oct 2020, Accepted 24 Jan 2021, Published online: 08 Feb 2021

References

  • Priyadarsini KI, Singh BG, Kunwar A. Current developments on synthesis, redox reactions and biochemical studies of selenium antioxidants. CCB. 2013;7(1):37–46.
  • Nogueira CW, Rocha JBT. Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol. 2011;85(11):1313–1359.
  • Battin EE, Brumaghim JL. Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys. 2009;55(1):1–23.
  • Papp LA, Lu J, Holmgren A, et al. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal. 2007;9(7):775–806.
  • Kumakura F, Mishra B, Priyadarsini KI, et al. A water-soluble cyclic selenide with enhanced glutathione peroxidase-like catalytic activities. Eur J Org Chem. 2010;2010(3):440–445.
  • Migdal C, Serres M. [Reactive oxygen species and oxidative stress]. Med Sci (Paris). 2011;27(4):405–412.
  • Maroney MJ, Hondal RJ. Selenium versus sulfur: reversibility of chemical reactions and resistance to permanent oxidation in proteins and nucleic acids. Free Radic Biol Med. 2018;127:228–237.
  • Sandford C, Edwards MA, Klunder KJ, et al. A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms. Chem Sci. 2019;10(26):6404–6422.
  • Wardman P, Clarke ED. Redox properties and rate constants in free-radical mediated damage. Br J Cancer Suppl. 1987;8:172–177.
  • Marinov BS, Evtodienko JV. Estimation of redox properties of chemical compounds by their reactions with free radicals. Anal Biochem. 1994;220(1):154–159.
  • Bird MJ, Cook AR, Zamadar M, et al. Pushing the limits of the electrochemical window with pulse radiolysis in chloroform. Phys Chem Chem Phys. 2020;22(26):14660–14670.
  • Sørlie M, Seefeldt LC, Parker VD. Use of stopped-flow spectrophotometry to establish midpoint potentials for redox proteins. Anal Biochem. 2000;287(1):118–125.
  • Steinmann D, Nauser T, Koppenol WH. Selenium and sulfur in exchange reactions: a comparative study. J Org Chem. 2010;75(19):6696–6699.
  • Pálla T, Mirzahosseini A, Noszál B. Species-specific, ph-independent, standard redox potential of selenocysteine and selenocysteamine. Antioxidants (Basel). 2020;9(6):465.
  • Jones DP. Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol. 2002;348:93–112.
  • Cotgreave IA, Moldéus P, Brattsand R, et al. Alpha-(phenylselenenyl)acetophenone derivatives with glutathione peroxidase-like activity. A comparison with ebselen. Biochem Pharmacol. 1992;43(4):793–802.
  • Prabhu P, Bag PP, Singh BG, et al. Effect of functional groups on antioxidant properties of substituted selenoethers. Free Radic Res. 2011;45(4):461–468.
  • Mishra B, Sharma A, Naumov S, et al. Novel reactions of one-electron oxidized radicals of selenomethionine in comparison with methionine. J Phys Chem B. 2009;113(21):7709–7715.
  • Mishra B, Priyadarsini KI, Mohan H. Effect of pH on one-electron oxidation chemistry of organoselenium compounds in aqueous solutions. J Phys Chem A. 2006;110(5):1894–1900.
  • Singh BG, Nadkarni SA, Jain VK, et al. Effect of alkyl chain length on one-electron oxidation of bis(alkyl carboxylic acid) selenides: implication on their antioxidant ability. RSC Adv. 2015;5(82):66621–66627.
  • Kumar PV, Singh BG, Phadnis PP, et al. Effect of molecular interactions on electron-transfer and antioxidant activity of bis(alkanol)selenides: a radiation chemical study. Chem Eur J. 2016;22(34):12189–12198.
  • Carroll L, Gardiner K, Ignasiak M, et al. Interaction kinetics of selenium-containing compounds with oxidants. J. Free Radic Biol. Med. 2020;155:58–68.
  • Arai K, Kumakura F, Takahira M, et al. Effects of ring size and polar functional groups on the glutathione peroxidase-like antioxidant activity of water-soluble cyclic selenides. J Org Chem. 2015;80(11):5633–5642.
  • Singh BG, Thomas E, Kumakura F, et al. One-electron redox processes in a cyclic selenide and a selenoxide: a pulse radiolysis study. J Phys Chem A. 2010;114(32):8271–8277.
  • Singh BG, Kumar PV, Phadnis PP, et al. Free radical induced selenoxide formation in isomeric organoselenium compounds: the effect of chemical structures on antioxidant activity. New J Chem. 2019;43(34):13357–13362.
  • Kumar PV, Singh BG, Kunwar A, et al. Degradation of peroxynitrite by simple, recyclable selenolanes. BCSJ. 2016;89(4):490–497.
  • Nauser T, Steinmann D, Koppenol WH. Why do proteins use selenocysteine instead of cysteine? Amino Acids. 2012;42(1):39–44.
  • Press DJ, Back TG. Enhanced glutathione peroxidase activity of conformationally restricted naphthalene peri-dichalcogenides. Org Lett. 2011;13(15):4104–4107.
  • Iwaoka M, Sano N, Lin YY, et al. Fatty acid conjugates of water-soluble (±)-trans-Selenolane-3,4-diol: effects of alkyl chain length on the antioxidant capacity. Chembiochem. 2015;16(8):1226–1234.
  • Iwaoka M, Katakura A, Mishima J, et al. Mimicking the lipid peroxidation inhibitory activity of phospholipid hydroperoxide glutathione peroxidase (GPx4) by using fatty acid conjugates of a water-soluble selenolane. Molecules. 2015;20(7):12364–12375.
  • Mugesh G, Du Mont W-W, Sies H. Chemistry of biologically important synthetic organoselenium compounds. Chem Rev. 2001;101(7):2125–2179.
  • Iwaoka M, Tomoda S. A model study on the effect of an amino group on the antioxidant activity of glutathione peroxidase. J Am Chem Soc. 1994;116(6):2557–2561.
  • Mishra B, Priyadarsini KI, Mohan H, et al. Horseradish peroxidase inhibition and antioxidant activity of ebselen and related organoselenium compounds. Bioorg Med Chem Lett. 2006;16(20):5334–5338.
  • Mukherjee AJ, Zade SS, Singh HB, et al. Organoselenium chemistry: role of intramolecular interactions. Chem Rev. 2010;110(7):4357–4416.
  • Singh BG, Thomas E, Sawant SN, et al. Radical cations of aromatic selenium compounds: role of Se···X nonbonding interactions. J Phys Chem A. 2013;117(38):9259–9265.
  • Kryukov GV, Gladyshev VN. Selenium metabolism in zebrafish: multiplicity of selenoprotein genes and expression of a protein containing 17 selenocysteine residues. Genes Cells. 2000;5(12):1049–1060.
  • Mishra B, Kumbhare LB, Jain VK, et al. Pulse radiolysis studies on reactions of hydroxyl radicals with selenocystine derivatives. J Phys Chem B. 2008;112(14):4441–4446.
  • Mishra B, Barik A, Kunwar A, et al. Correlating the GPx activity of selenocystine derivatives with one-electron redox reactions. Phosphorus Sulfur Silicon. 2008;183(4):1018–1025.
  • Singh BG, Bag PP, Kumakura F, et al. Role of substrate reactivity in the glutathione peroxidase (GPx) activity of selenocystine. BCSJ. 2010;83(6):703–708.
  • Kumar BS, Kunwar A, Singh BG, et al. Anti-hemolytic and peroxyl radical scavenging activity of organoselenium compounds: an in vitro study. Biol Trace Elem Res. 2011;140(2):127–138.
  • Kunwar A, Mishra B, Barik A, et al. 3,3'-diselenodipropionic acid, an efficient peroxyl radical scavenger and a GPx mimic, protects erythrocytes (RBCs) from AAPH-induced hemolysis. Chem Res Toxicol. 2007;20(10):1482–1487.
  • Barik A, Singh BG, Sharma A, et al. Pulse radiolysis studies of 3,5-dimethyl pyrazole derivatives of selenoethers. J Phys Chem A. 2014;118(44):10179–10187.
  • Prabhu PC, Phadnis PP, Wadawale A, et al. Synthesis, characterization, structures and antioxidant activity of nicotinoyl based organoselenium compounds. J. Organometallic Chem. 2012;713:42–50.
  • Prabhu CP, Singh BG, Noguchi M, et al. Stable selones in glutathione-peroxidase-like catalytic cycle of selenonicotinamide derivative. Org Biomol Chem. 2014;12(15):2404–2412.
  • Sanmartín C, Plano D, Sharma AK, Palop  , et al. Selenium compounds, apoptosis and other types of cell death: an overview for cancer therapy. Int J Mol Sci. 2012;13(8):9649–9672.
  • Takahashi K, Suzuki N, Ogra Y. Bioavailability comparison of nine bioselenocompounds in vitro and in vivo. IJMS. 2017;18(3):506.
  • Plano D, Baquedano Y, Ibáñez E, et al. Antioxidant-prooxidant properties of a new organoselenium compound library. Molecules. 2010;15(10):7292–7312.
  • Kunwar A, Patil A, Kumar S, et al. Toxicological safety evaluation of 3,3'-diselenodipropionic acid (DSePA), a pharmacologically important derivative of selenocystine. Regul Toxicol Pharmacol. 2018;99:159–167.
  • Raghuraman M, Verma P, Kunwar A, et al. Cellular evaluation of diselenonicotinamide (DSNA) as a radioprotector against cell death and DNA damage. Metallomics. 2017;9(6):715–725.
  • Verma P, Kunwar A, Arai K, et al. Mechanism of radioprotection by dihydroxy-1-selenolane (DHS): Effect of fatty acid conjugation and role of glutathione peroxidase (GPx). Biochimie. 2018;144:122–133.
  • Gandhi V, Priyadarsini KI, Kunwar A. Paradoxical behavior of organodiselenides: pro-oxidant to antioxidant. Chem. Proc. 2020;2(1):6.
  • Gandhi VV, Phadnis PP, Kunwar A. 2,2'-Dipyridyl diselenide (Py2Se2) induces G1 arrest and apoptosis in human lung carcinoma (A549) cells through ROS scavenging and reductive stress. Metallomics. 2020;12(8):1253–1266.
  • Kunwar A, Priyadarsini KI, Jain VK. 3,3'-Diselenodipropionic acid (DSePA): a redox active multifunctional molecule of biological relevance. Biochim Biophys Acta Gen Subj. 2021;1865(1):129768
  • Kunwar A, Verma P, Bhilwade HN, et al. Dihydroxyselenolane (DHS) supplementation improves survival following whole-body irradiation (WBI) by suppressing tissue-specific inflammatory responses. Mutat Res Genet Toxicol Environ Mutagen. 2016;807:33–46.
  • Kunwar A, Jayakumar S, Bhilwade HN, et al. Protective effects of selenocystine against γ-radiation-induced genotoxicity in Swiss albino mice. Radiat Environ Biophys. 2011;50(2):271–280.
  • Kunwar A, Bansal P, Kumar SJ, et al. In vivo radioprotection studies of 3,3'-diselenodipropionic acid, a selenocystine derivative. Free Radic Biol Med. 2010;48(3):399–410.
  • Chaurasia RK, Balakrishnan S, Kunwar A, et al. Cyto-genotoxicity assessment of potential radioprotector, 3,3'-diselenodipropionic acid (DSePA) in Chinese Hamster Ovary (CHO) cells and human peripheral blood lymphocytes. Mutat Res Genet Toxicol Environ Mutagen. 2014;774:8–16.
  • Gandhi KA, Goda JS, Gandhi VV, et al. Oral administration of 3,3′-diselenodipropionic acid prevents thoracic radiation induced pneumonitis in mice by suppressing NF-kB/IL-17/G-CSF/neutrophil axis. Biol. Med. 2019;145:8–19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.