280
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Targeting endogenous gaseous signaling molecules as novel host-directed therapies against tuberculosis infection

, &
Pages 903-918 | Received 20 Oct 2020, Accepted 11 Feb 2021, Published online: 01 Mar 2021

References

  • World Health Organization (WHO). Global tuberculosis report; 2015. https://apps.who.int/iris/handle/10665/191102
  • World Health Organization. Fact Sheet No.104: tuberculosis. Geneva: WHO; 2010.
  • World Health Organization. Global tuberculosis report 2018. Geneva: World Health Organization; 2018.
  • Hawn TR, Matheson AI, Maley SN, et al. Host-directed therapeutics for tuberculosis: can we harness the host? Microbiol Mol Biol Rev. 2013;77(4):608–627.
  • Kolloli A, Subbian S. Host-directed therapeutic strategies for tuberculosis. Front Med. 2017;4:171.
  • Zumla A, Rao M, Wallis RS, et al. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infect Dis. 2016;16(4):e47–e63.
  • Palucci I, Delogu G. Host directed therapies for tuberculosis: futures strategies for an ancient disease. Chemotherapy. 2018;63(3):172–180.
  • Tiberi S, Du Plessis N, Walzl G, et al. Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect Dis. 2018;18(7):e183–e198.
  • Rao M, Dodoo E, Zumla A, et al. Immunometabolism and pulmonary infections: implications for protective immune responses and host-directed therapies. Front Microbiol. 2019;10:962.
  • Dutta NK, Bruiners N, Zimmerman MD, et al. Adjunctive host-directed therapy with statins improves tuberculosis-related outcomes in mice. J Infect Dis. 2020;221(7):1079–1087.
  • Abreu R, Giri P, Quinn F. Host-pathogen interaction as a novel target for host-directed therapies in tuberculosis. Front Immunol. 2020;21(11):1553.
  • Hortle E, Oehlers SH. Host-directed therapies targeting the tuberculosis granuloma stroma. Pathog Dis. 2020;78(2):ftaa015.
  • Gries R, Sala C, Rybniker J. Host-directed therapies and anti-virulence compounds to address anti-microbial resistant tuberculosis infection. Appl Sci. 2020;10(8):2688.
  • Mehra S, Foreman TW, Didier PJ, et al. The DosR regulon modulates adaptive immunity and is essential for Mycobacterium tuberculosis persistence. Am J Respir Crit Care Med. 2015;191(10):1185–1196.
  • Kumar A, Deshane JS, Crossman DK, et al. Heme oxygenase-1-derived carbon monoxide induces the Mycobacterium tuberculosis dormancy regulon. J Biol Chem. 2008;283(26):18032–18039.
  • Voskuil MI, Schnappinger D, Visconti KC, et al. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med. 2003;198(5):705–713.
  • Saini V, Chinta KC, Reddy VP, et al. Hydrogen sulfide stimulates Mycobacterium tuberculosis respiration, growth and pathogenesis. Nat Commun. 2020;11(1):1–7.
  • Taneja V, Kalra P, Goel M, et al. Impact and prognosis of the expression of IFN-α among tuberculosis patients. Plos One. 2020;15(7):e0235488.
  • Chai Q, Zhang Y, Liu CH. Mycobacterium tuberculosis: an adaptable pathogen associated with multiple human diseases. Front. Cell. Infect. Microbiol. 2018;15(8):158.
  • World Health Organization. Collaborative framework for care and control of tuberculosis and diabetes. Geneva: World Health Organization; 2011. WHO/HTM/TB/2011.15
  • Iseman M, Chan E. Current medical treatment for tuberculosis. BMJ. 2002;320:282–286.
  • Horsburgh CR, Jr Barry CE, III, Lange C. Treatment of tuberculosis. N Engl J Med. 2015;373(22):2149–2160.
  • Deoghare S. Bedaquiline: a new drug approved for treatment of multidrug-resistant tuberculosis. Indian J Pharmacol. 2013;45(5):536–537.
  • Bloemberg GV, Keller PM, Stucki D, et al. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N Engl J Med. 2015;373(20):1986–1988.
  • Saini V, Cumming BM, Guidry L, et al. Ergothioneine maintains redox and bioenergetic homeostasis essential for drug susceptibility and virulence of Mycobacterium tuberculosis. Cell Rep. 2016;14(3):572–585.
  • Guirado E, Schlesinger LS, Kaplan G. Macrophages in tuberculosis: friend or foe. Semin Immunopathol. 2013;35(5):563–583.
  • Cooper AM, Dalton DK, Stewart TA, et al. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med. 1993;178(6):2243–2247.
  • Jouanguy E, Altare F, Lamhamedi S, et al. Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guérin infection. N Engl J Med. 1996;335(26):1956–1962.
  • de Jong R, Altare F, Haagen IA, et al. Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science. 1998;280(5368):1435–1438.
  • Caruso AM, Serbina N, Klein E, et al. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-γ, yet succumb to tuberculosis. J Immunol. 1999;162(9):5407–5416.
  • van Pinxteren LA, Cassidy JP, Smedegaard BH, et al. Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur J Immunol. 2000;30(12):3689–3698.
  • Yang D, Kong Y. The bacterial and host factors associated with extrapulmonary dissemination of Mycobacterium tuberculosis. Front Biol (Beijing). 2015;10(3):252–261.
  • Bekker LG, Moreira AL, Bergtold A, et al. Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent. Infect Immun. 2000;68(12):6954–6961.
  • Sly LM, Hingley-Wilson SM, Reiner NE, et al. Survival of Mycobacterium tuberculosis in host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic Bcl-2 family member Mcl-1. J Immunol. 2003;170(1):430–437.
  • Fortune SM, Solache A, Jaeger A, et al. Mycobacterium tuberculosis inhibits macrophage responses to IFN-gamma through myeloid differentiation factor 88-dependent and -independent mechanisms . J Immunol. 2004;172(10):6272–6280.
  • Sun Z, Ren W, Xu Y, et al. Preliminary study on the virulence of XDR-TB: low virulence owing to less cytokine expression through the TLR 2 and TLR4 pathways in BLAB/C mice. Biomed Mater Eng. 2014;24(6):3873–3882.
  • Basingnaa A, Antwi-Baffour S, Nkansah DO, et al. Plasma levels of cytokines (IL-10, IFN-γ and TNF-α) in multidrug resistant tuberculosis and drug responsive tuberculosis patients in Ghana. Diseases. 2018;7(1):2.
  • Skolimowska KH, Rangaka MX, Meintjes G, et al. Altered ratio of IFN-γ/IL-10 in patients with drug resistant Mycobacterium tuberculosis and HIV- Tuberculosis Immune Reconstitution Inflammatory Syndrome . PLoS One. 2012;7(10):e46481.
  • Kviatcovsky D, Rivadeneyra L, Balboa L, et al. Mycobacterium tuberculosis multidrug-resistant strain m induces low IL-8 and inhibits TNF-α secretion by bronchial epithelial cells altering neutrophil effector functions. Med Inflamm. 2017;2017:1–13.
  • Shi L, Jiang Q, Bushkin Y, et al. Biphasic dynamics of macrophage immunometabolism during Mycobacterium tuberculosis infection. MBio. 2019;10(2):e02550–18. DOI:10.1128/mBio.02550-18.
  • Mehrotra P, Jamwal SV, Saquib N, et al. Pathogenicity of Mycobacterium tuberculosis is expressed by regulating metabolic thresholds of the host macrophage. PLoS Pathog. 2014;10(7):e1004265.
  • Howard NC, Marin ND, Ahmed M, et al. Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes. Nat Microbiol. 2018;3(10):1099–1108.
  • Rius J, Guma M, Schachtrup C, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha . Nature. 2008;453(7196):807–811.
  • Chatterjee S, Dwivedi VP, Singh Y, et al. Early secreted antigen ESAT-6 of Mycobacterium tuberculosis promotes protective T helper 17 cell responses in a toll-like receptor-2-dependent manner. PLoS Pathog. 2011;7(11):e1002378.
  • Yang S, Li F, Jia S, et al. Early secreted antigen ESAT-6 of Mycobacterium tuberculosis promotes apoptosis of macrophages via targeting the microRNA155-SOCS1 interaction. Cell Physiol Biochem. 2015;35(4):1276–1288.
  • Gleeson LE, Sheedy FJ, Palsson-McDermott EM, et al. Cutting edge: Mycobacterium tuberculosis induces aerobic glycolysis in human alveolar macrophages that is required for control of intracellular bacillary replication. J Immunol. 2016;196(6):2444–2449.
  • Qualls JE, Murray PJ. Immunometabolism within the tuberculosis granuloma: amino acids, hypoxia, and cellular respiration. Semin Immunopathol. 2016;38(2):139–152.
  • Shi L, Salamon H, Eugenin EA, et al. Infection with Mycobacterium tuberculosis induces the Warburg effect in mouse lungs. Sci Rep. 2015;5:18176.
  • Shi L, Eugenin EA, Subbian S. Immunometabolism in tuberculosis. Front Immunol. 2016;7:150.
  • Netea MG, Domínguez-Andrés J, Barreiro LB, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020;4:1–4.
  • Bekkering S, Arts RJ, Novakovic B, et al. Metabolic induction of trained immunity through the mevalonate pathway. Cell. 2018;172(1–2):135–146.
  • Kaufmann E, Sanz J, Dunn JL, et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell. 2018;172(1–2):176–190.
  • Arts RJW, Carvalho A, La Rocca C, et al. Immunometabolic pathways in BCG-induced trained immunity. Cell Rep. 2016;17(10):2562–2571.
  • Saini V, Raghuvanshi S, Khurana JP, et al. Massive gene acquisitions in Mycobacterium indicus pranii provide a perspective on mycobacterial evolution. Nucleic Acids Res. 2012;40(21):10832–10850.
  • Saini V, Raghuvanshi S, Talwar GP, et al. Polyphasic taxonomic analysis establishes Mycobacterium indicus pranii as a distinct species. PloS One. 2009;4(7):e6263.
  • Lee YS, Wollam J, Olefsky JM. An integrated view of immunometabolism. Cell. 2018;172(1–2):22–40.
  • Patel M, Yarlagadda V, Adedoyin O, et al. Oxalate induces mitochondrial dysfunction and disrupts redox homeostasis in a human monocyte derived cell line. Redox Biol. 2018;15:207–215.
  • Chinta KC, Saini V, Glasgow JN, et al. The emerging role of gasotransmitters in the pathogenesis of tuberculosis. Nitric Oxide. 2016;59(59):28–41.
  • Pacl HT, Reddy VP, Saini V, et al. Host-pathogen redox dynamics modulate Mycobacterium tuberculosis pathogenesis. Pathogens and Disease. 2018;76(5):036.
  • Uasuf CG, Jatakanon A, James A, et al. Exhaled carbon monoxide in childhood asthma. J Pediatr. 1999;135(5):569–574.
  • Biernacki WA, Kharitonov SA, Barnes PJ. Exhaled carbon monoxide in patients with lower respiratory tract infection. Respir Med. 2001;95(12):1003–1005.
  • Antuni JD, Kharitonov SA, Hughes D, et al. Increase in exhaled carbon monoxide during exacerbations of cystic fibrosis. Thorax. 2000;55(2):138–142.
  • Shiloh MU, Manzanillo P, Cox JS. Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host Microbe. 2008;3(5):323–330.
  • Frieden TR, Sterling T, Pablos-Mendez A, et al. The emergence of drug-resistant tuberculosis in New York City. N Engl J Med. 1993;328(8):521–526.
  • Eisenstein RS, Garcia-Mayol D, Pettingell W, et al. Regulation of ferritin and heme oxygenase synthesis in rat fibroblasts by different forms of iron. Proc Natl Acad Sci U S A. 1991;88(3):688–692.
  • Stocker R, McDonagh AF, Glazer AN, et al. Antioxidant activities of bile pigments: biliverdin and bilirubin. Meth Enzymol. 1990;186:301–309.
  • Song R, Kubo M, Morse D, et al. Carbon monoxide induces cytoprotection in rat orthotopic lung transplantation via anti-inflammatory and anti-apoptotic effects. Am J Clin Pathol. 2003;163(1):231–242.
  • Morita T, Perrella MA, Lee ME, et al. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc Natl Acad Sci U S A. 1995;92(5):1475–1479.
  • Ryter SW, Otterbein LE, Morse D, et al. Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. Mole Cell Biochem. 2002;234/235(1):249–263.
  • Chinta KC, Rahman MA, Saini V, et al. Microanatomic distribution of myeloid heme oxygenase-1 protects against free radical-mediated immunopathology in human tuberculosis. Cell Rep. 2018;25(7):1938–1952.
  • Andrade BB, Kumar NP, Mayer-Barber KD, et al. Plasma heme oxygenase-1 levels distinguish latent or successfully treated human tuberculosis from active disease. PLoS One. 2013;8(5):e62618.
  • Zacharia VM, Manzanillo PS, Nair VR, et al. cor, a novel carbon monoxide resistance gene, is essential for Mycobacterium tuberculosis pathogenesis. MBio. 2013;4(6):e00721-13.
  • Otterbein LE, Soares MP, Yamashita K, et al. Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 2003;24(8):449–455.
  • Morse D, Choi AM. Heme oxygenase-1: from bench to bedside. Am J Respir Crit Care Med. 2005;172(6):660–670.
  • Motterlini R, Mann BE, Foresti R. Therapeutic applications of carbon monoxide-releasing molecules. Expert Opin Investig Drugs. 2005;14(11):1305–1318.
  • Motterlini R, Sawle P, Bains S, et al. CORM‐A1: a new pharmacologically active carbon monoxide‐releasing molecule. FASEB J. 2005;19(2):1–24.
  • Alcaraz MJ, Guillen MI, Ferrandiz ML, et al. Carbon monoxide-releasing molecules: a pharmacological expedient to counteract inflammation. Curr Pharm Des. 2008;14(5):465–472.
  • Desmard M, Davidge KS, Bouvet O, et al. A carbon monoxide-releasing molecule (CORM-3) exerts bactericidal activity against Pseudomonas aeruginosa and improves survival in an animal model of bacteraemia. Faseb J. 2009;23(4):1023–1031.
  • Nobre LS, Seixas JD, Romão CC, et al. Antimicrobial action of carbon monoxide-releasing compounds. Antimicrob Agents Chemother. 2007;51(12):4303–4307.
  • Pan Z, Zhang J, Ji K, et al. Organic CO prodrugs activated by endogenous ROS. Org Lett. 2018;20(1):8–11.
  • Ismailova A, Kuter D, Bohle DS, et al. An overview of the potential therapeutic applications of CO-releasing molecules. Bioinorg Chem Appl. 2018;2018:1–23. 2018
  • Tsai EJ, Kass DA. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol Ther. 2009;122(3):216–238.
  • Flesch IE, Kaufmann SH. Mechanisms involved in mycobacterial growth inhibition by gamma interferon-activated bone marrow macrophages: role of reactive nitrogen intermediates. Infect Immun. 1991;59(9):3213–3218.
  • Appelberg R, Orme IM. Effector mechanisms involved in cytokine-mediated bacteriostasis of Mycobacterium avium infections in murine macrophages. Immunol. 1993;80(3):352.
  • MacMicking JD, North RJ, LaCourse R, et al. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A. 1997;94(10):5243–5248.
  • Denis M. Interferon-gamma-treated murine macrophages inhibit growth of tubercle bacilli via the generation of reactive nitrogen intermediates. Cell Immunol. 1991;132(1):150–157.
  • Chan J, Xing Y, Magliozzo RS, et al. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med. 1992;175(4):1111–1122.
  • Chan J, Tanaka K, Carroll D, et al. Effects of nitric oxide synthase inhibitors on murine infection with Mycobacterium tuberculosis. Infect Immun. 1995;63(2):736–740.
  • Kimmey JM, Campbell JA, Weiss LA, et al. The impact of ISGylation during Mycobacterium tuberculosis infection in mice. Microbes Infect. 2017;19(4–5):249–258.
  • Scanga CA, Mohan VP, Tanaka K, et al. The inducible nitric oxide synthase locus confers protection against aerogenic challenge of both clinical and laboratory strains of Mycobacterium tuberculosis in mice. Infect Immun. 2001;69(12):7711–7717.
  • Mishra BB, Rathinam VA, Martens GW, et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nat Immunol. 2013;14(1):52–60.
  • Mishra BB, Lovewell RR, Olive AJ, et al. Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis. Nature Microbiol. 2017;2(7):1–1.
  • Braverman J, Stanley SA. Nitric oxide modulates macrophage responses to Mycobacterium tuberculosis infection through activation of HIF-1α and repression of NF-κB. J Immunol. 2017;199(5):1805–1816.
  • Choi HS, Rai PR, Chu HW, et al. Analysis of nitric oxide synthase and nitrotyrosine expression in human pulmonary tuberculosis. Am J Respir Crit Care Med. 2002;166(2):178–186.
  • Schön T, Elmberger G, Negesse Y, et al. Local production of nitric oxide in patients with tuberculosis. Int J Tuberc Lung Dis. 2004;8(9):1134–1137.
  • Jamaati H, Mortaz E, Pajouhi Z, et al. Nitric oxide in the pathogenesis and treatment of tuberculosis. Front Microbiol. 2017;8:2008.
  • Sharma S, Sharma M, Roy S, et al. Mycobacterium tuberculosis induces high production of nitric oxide in coordination with production of tumour necrosis factor-alpha in patients with fresh active tuberculosis but not in MDR tuberculosis . Immunol Cell Biol. 2004;82(4):377–382.
  • Nathan C. Inducible nitric oxide synthase in the tuberculous human lung. Am J Respir Crit Care Med. 2002;166(2):130–131.
  • Schon T, Gebre N, Sundqvist T, et al. Effects of HIV co-infection and chemotherapy on the urinary levels of nitric oxide metabolites in patients with pulmonary tuberculosis. Scand J Infect Dis. 1999;31:123–126.
  • Sousa EH, Tuckerman JR, Gonzalez G, et al. DosT and DevS are oxygen-switched kinases in Mycobacterium tuberculosis . Protein Sci. 2007;16(8):1708–1719.
  • Long R, Jones R, Talbot J, et al. Inhaled nitric oxide treatment of patients with pulmonary tuberculosis evidenced by positive sputum smears. Antimicrob Agents Chemother. 2005;49(3):1209–1212.
  • Timmins GS, Master S, Rusnak F, et al. Requirements for nitric oxide generation from isoniazid activation in vitro and inhibition of mycobacterial respiration in vivo. J Bacteriol. 2004;186(16):5427–5431.
  • Nathan C, Shiloh MU. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A. 2000;97(16):8841–8848.
  • Idh J, Mekonnen M, Abate E, et al. Resistance to first-line anti-TB drugs is associated with reduced nitric oxide susceptibility in Mycobacterium tuberculosis. PloS One. 2012;7(6):e39891.
  • Yang T, Zelikin AN, Chandrawati R. Progress and Promise of Nitric Oxide-Releasing Platforms. Adv Sci (Weinh). 2018;5(6):1701043.
  • Özenver N, Efferth T. Small molecule inhibitors and stimulators of inducible nitric oxide synthase in cancer cells from natural origin (phytochemicals, marine compounds, antibiotics). Biochem Pharmacol. 2020;176:113792.
  • Gur S, Chen AL, Kadowitz PJ. Nitric oxide donors and penile erectile function. Nitric Oxide Donors. 2017;5(6):121–140.
  • Nieto-Patlán E, Serafín-López J, Wong-Baeza I, et al. Valproic acid promotes a decrease in mycobacterial survival by enhancing nitric oxide production in macrophages stimulated with IFN-γ. Tuberculosis (Edinb). 2019;114:123–126.
  • Gengenbacher M, Kaufmann SH. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev. 2012;36(3):514–532.
  • Liu X, Srinivasan P, Collard E, et al. Oxygen regulates the effective diffusion distance of nitric oxide in the aortic wall. Free Radi Biol Med. 2010;48(4):554–559.
  • Hall JR, Maloney SE, Jin H, et al. Nitric oxide diffusion through cystic fibrosis-relevant media and lung tissue. RSC Adv. 2019;9(68):40176–40183.
  • Sershen CL, Plimpton SJ, May EE. Oxygen modulates the effectiveness of granuloma mediated host response to mycobacterium tuberculosis: a multiscale computational biology approach. Front Cell Infect Microbiol. 2016;6:6.
  • Villanueva C, Giulivi C. Subcellular and cellular locations of nitric oxide synthase isoforms as determinants of health and disease. Free Radic Biol Med. 2010;49(3):307–316.
  • Thomas DD, Ridnour LA, Isenberg JS, et al. The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med. 2008;45(1):18–31.
  • Miller BH, Fratti RA, Poschet JF, et al. Mycobacteria inhibit nitric oxide synthase recruitment to phagosomes during macrophage infection. Infect Immun. 2004;72(5):2872–2878.
  • Yang J, Minkler P, Grove D, et al. Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B6. Commun Biol. 2019;2(1):1–4.
  • Citi V, Martelli A, Brancaleone V, et al. Anti‐inflammatory and antiviral roles of hydrogen sulfide: rationale for considering H2S donors in COVID‐19 therapy. Br J Pharmacol. 2020;177(21):4931–4941.
  • Mathai JC, Missner A, Kügler P, et al. No facilitator required for membrane transport of hydrogen sulfide. Proc Natl Acad Sci U S A. 2009;106(39):16633–16638.
  • Riahi S, Rowley CN. Why can hydrogen sulfide permeate cell membranes? J Am Chem Soc. 2014;136(43):15111–15113.
  • Olson KR. Hydrogen sulfide as an oxygen sensor. Antioxid Redox Signal. 2015;22(5):377–397.
  • Olson KR. A theoretical examination of hydrogen sulfide metabolism and its potential in autocrine/paracrine oxygen sensing. Respir Physiol Neurobiol. 2013;186(2):173–179.
  • Olson KR, Straub KD. The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling. Physiology. 2015;31(1):60–72.
  • Olson KR, Dombkowski RA, Russell MJ, et al. Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J Exp Biol. 2006;209(Pt 20):4011–4023.
  • Szabo C, Ransy C, Módis K, et al. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br J Pharmacol. 2014;171(8):2099–2122.
  • Petersen LC. The effect of inhibitors on the oxygen kinetics of cytochrome c oxidase. Biochim Biophys Acta. 1977;460(2):299–307.
  • Goubern M, Andriamihaja M, Nübel T, et al. Sulfide, the first inorganic substrate for human cells. Faseb J. 2007;21(8):1699–1706.
  • McCook O, Radermacher P, Volani C, et al. H2S during circulatory shock: some unresolved questions. Nitric Oxide. 2014;41:48–61.
  • Kana BD, Weinstein EA, Avarbock D, et al. Characterization of the cydAB-Encoded Cytochrome bd Oxidase from Mycobacterium smegmatis. J Bacteriol. 2001;183(24):7076–7086.
  • Shi L, Sohaskey CD, Kana BD, et al. Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc Natl Acad Sci U S A. 2005;102(43):15629–15634.
  • Rahman MA, Cumming BM, Addicott KW, et al. Hydrogen sulfide dysregulates the immune response by suppressing central carbon metabolism to promote tuberculosis. Proc Natl Acad Sci U S A. 2020;117(12):6663–6674.
  • Shatalin K, Shatalina E, Mironov A, et al. H2S: a universal defense against antibiotics in bacteria. Science. 2011;334(6058):986–990.
  • Shukla P, Khodade VS, SharathChandra M, et al. "On demand" redox buffering by H2S contributes to antibiotic resistance revealed by a bacteria-specific H2S donor” . Chem Sci. 2017;8(7):4967–4972.
  • Kabil O, Weeks CL, Carballal S, et al. Reversible heme-dependent regulation of human cystathionine β-synthase by a flavoprotein oxidoreductase. Biochemistry. 2011;50(39):8261–8263.
  • Taoka S, Banerjee R. Characterization of NO binding to human cystathionine beta-synthase: possible implications of the effects of CO and NO binding to the human enzyme. J Inorg Biochem. 2001;87(4):245–251.
  • Taoka S, Ohja S, Shan X, et al. Evidence for heme-mediated redox regulation of human cystathionine beta-synthase activity. J Biol Chem. 1998;273(39):25179–25184.
  • Mironov A, Seregina T, Nagornykh M, et al. Mechanism of H2S-mediated protection against oxidative stress in Escherichia coli. Proc Natl Acad Sci U S A. 2017;114(23):6022–6027.
  • Kolluru GK, Prasai PK, Kaskas AM, et al. Oxygen tension, H2S, and NO bioavailability: is there an interaction? J Appl Physiol (1985). 2016;120(2):263–270.
  • Hematian S, Siegler MA, Karlin KD. Heme/copper assembly mediated nitrite and nitric oxide interconversion. J Am Chem Soc. 2012;134(46):18912–18915.
  • Vicente JB, Malagrinò F, Arese M, et al. Bioenergetic relevance of hydrogen sulfide and the interplay between gasotransmitters at human cystathionine β-synthase. Biochim Biophys Acta. 2016;1857(8):1127–1138.
  • Cao X, Ding L, Xie ZZ, et al. A review of hydrogen sulfide synthesis, metabolism, and measurement: is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid Redox Signal. 2019;31(1):1–38.
  • Whiteman M, Armstrong JS, Chu SH, et al. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite 'scavenger'? J Neurochem. 2004;90(3):765–768.
  • Lagoutte E, Mimoun S, Andriamihaja M, et al. Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes. Biochim Biophysic Acta Bioenerg. 2010;1797(8):1500–1511.
  • Maji A, Misra R, Dhakan DB, et al. Gut microbiome contributes to impairment of immunity in pulmonary tuberculosis patients by alteration of butyrate and propionate producers. Environ Microbiol. 2018;20(1):402–419.
  • Eribo OA, Du Plessis N, Ozturk M, et al. The gut microbiome in tuberculosis susceptibility and treatment response: guilty or not guilty? Cell Mol Life Sci. 2020;77(8):1497–1509.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.