1,167
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Lipid composition dictates the rate of lipid peroxidation in artificial lipid droplets

, &
Pages 469-480 | Received 30 Oct 2020, Accepted 26 Feb 2021, Published online: 19 Apr 2021

References

  • Christi WW, Harwoo JL. Oxidation of polyunsaturated fatty acids to produce lipid mediators. Essays Biochem. 2020;64:401–421.
  • Dixon SJ, Stockwell BR. The hallmarks of ferroptosis. Annu Rev Cancer Biol. 2019;3(1):35–54.
  • Wassall SR, Stillwell W. Polyunsaturated fatty acid-cholesterol interactions: domain formation in membranes. Biochim Biophys Acta. 2009;1788(1):24–32.
  • Tucker JM, Townsend DM. Alpha-tocopherol: roles in prevention and therapy of human disease. Biomed Pharmacother. 2005;59(7):380–387.
  • Maiorino M, Conrad M, Ursini F. GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues. Antioxid Redox Signal. 2018;29(1):61–74.
  • Coliva G, Lange M, Colombo S, et al. Sphingomyelins prevent propagation of lipid peroxidation—LC-MS/MS evaluation of inhibition mechanisms. Molecules. 2020;25(8):1925.
  • Zhong S, Li L, Shen X, et al. An update on lipid oxidation and inflammation in cardiovascular diseases. Free Radic Biol Med. 2019;144:266–278.
  • Guo S, Lu J, Zhuo Y, et al. Endogenous cholesterol ester hydroperoxides modulate cholesterol levels and inhibit cholesterol uptake in hepatocytes and macrophages. Redox Biol. 2019;21:101069.
  • Lu J, Chen B, Chen T, et al. Comprehensive metabolomics identified lipid peroxidation as a prominent feature in human plasma of patients with coronary heart diseases. Redox Biol. 2017;12:899–907.
  • Yin H, Morrow JD, Porter NA. Identification of a Novel Class of Endoperoxides from Arachidonate Autoxidation. J Biol Chem. 2004;279(5):3766–3776.
  • Choi S-H, Yin H, Ravandi A, et al. Polyoxygenated cholesterol ester hydroperoxide activates TLR4 and SYK dependent signaling in macrophages. PLoS One. 2013;8(12):e83145–10.
  • Perugini C, Bagnati M, Cau C, et al. Distribution of lipid-soluble antioxidants in lipoproteins from healthy subjects. I. Correlation with plasma antioxidant levels and composition of lipoproteins. Pharmacol Res. 2000;41(1):53–63.
  • Vuorela T, et al. Role of lipids in spheroidal high density lipoproteins. PLoS Comput Biol. 2010;6:e1000964.
  • Cordeiro RM. Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation. Biochim Biophys Acta. 2014;1838(1 Pt B):438–444.
  • Dix TA, Aikens J. Mechanisms and biological relevance of lipid peroxidation initiation. Chem Res Toxicol. 1993;6(1):2–18.
  • Faustman C, Sun Q, Mancini R, et al. Myoglobin and lipid oxidation interactions: mechanistic bases and control. Meat Sci. 2010;86(1):86–94.
  • Upston JM, Terentis AC, Stocker R. Tocopherol-mediated peroxidation of lipoproteins: implications for vitamin E as a potential antiatherogenic supplement . Faseb J. 1999;13(9):977–994.
  • Bailey AP, Koster G, Guillermier C, et al. Antioxidant role for lipid droplets in a stem cell niche of drosophila. Cell. 2015;163(2):340–353.
  • Bai Y, Meng L, Han L, et al. Lipid storage and lipophagy regulates ferroptosis. Biochem Biophys Res Commun. 2019;508(4):997–1003.
  • Coliva G, Duarte S, Pérez-Sala D, et al. Impact of inhibition of the autophagy-lysosomal pathway on biomolecules carbonylation and proteome regulation in rat cardiac cells. Redox Biol. 2019;23:101123.
  • Veglia F, et al. Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat Commun. 2017;8:2122.
  • Cao W, Ramakrishnan R, Tuyrin VA, et al. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J Immunol. 2014;192(6):2920–2931.
  • May FJ, Baer LA, Lehnig AC, et al. Lipidomic adaptations in white and brown adipose tissue in response to exercise demonstrate molecular species-specific remodeling. Cell Rep. 2017;18(6):1558–1572.
  • Jarc E, Eichmann TO, Zimmermann R, et al. Lipidomic data on lipid droplet triglyceride remodelling associated with protection of breast cancer cells from lipotoxic stress. Data Brief. 2018;18:234–240.
  • Hartler J, Köfeler HC, Trötzmüller M, et al. Assessment of lipidomic species in hepatocyte lipid droplets from stressed mouse models. Sci Data. 2014;1:1–12.
  • Chitraju C, Trötzmüller M, Hartler J, et al. Lipidomic analysis of lipid droplets from murine hepatocytes reveals distinct signatures for nutritional stress. J Lipid Res. 2012;53(10):2141–2152.
  • Mahamid J, Tegunov D, Maiser A, et al. Liquid-crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association. Proc Natl Acad Sci USA. 2019;116(34):16866–16871.
  • Rinia HA, Burger KNJ, Bonn M, et al. Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy. Biophys J. 2008;95(10):4908–4914.
  • Rogers S, et al. Glucose restriction drives spatial re-organization of mevalonate metabolism and liquid-crystalline lipid droplet biogenesis. bioRxiv 2020.08.29.273318 2020.
  • Wang Y, Zhou X-M, Ma X, et al. Construction of nanodroplet/adiposome and artificial lipid droplets. ACS Nano. 2016;10(3):3312–3322.
  • Matyash V, Liebisch G, Kurzchalia TV, et al. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49(5):1137–1146.
  • Greenspan P, Mayer EP, Fowler SD. Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol. 1985;100(3):965–973.
  • Kurniasih IN, Liang H, Mohr PC, et al. Nile red dye in aqueous surfactant and micellar solution. Langmuir. 2015;31(9):2639–2648.
  • Pick U, Rachutin-Zalogin T. Kinetic anomalies in the interactions of Nile red with microalgae. J Microbiol Methods. 2012;88(2):189–196.
  • Rumin J, et al. The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnol Biofuels. 2015;8:1–16.
  • Arisawa K, Mitsudome H, Yoshida K, et al. Saturated fatty acid in the phospholipid monolayer contributes to the formation of large lipid droplets. Biochem Biophys Res Commun. 2016;480(4):641–647.
  • Shi X, Li J, Zou X, et al. Regulation of lipid droplet size and phospholipid composition by stearoyl-CoA desaturase. J Lipid Res. 2013;54(9):2504–2514.
  • Cohen BC, Shamay A, Argov-Argaman N. Regulation of lipid droplet size in mammary epithelial cells by remodeling of membrane lipid composition-a potential mechanism. PLoS One. 2015;10(3):e0121645–19.
  • Natarajan SK, Rasineni K, Ganesan M, et al. Structure, function and metabolism of hepatic and adipose tissue lipid droplets: implications in alcoholic liver disease. Curr Mol Pharmacol. 2017;10(3):237–248.
  • Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 2019;20(3):137–155.
  • Christinat N, Masoodi M. Comprehensive lipoprotein characterization using lipidomics analysis of human plasma. J Proteome Res. 2017;16(8):2947–2953.
  • Naguib YM. A fluorometric method for measurement of peroxyl radical scavenging activities of lipophilic antioxidants. Anal Biochem. 1998;265(2):290–298.
  • Berton C, Ropers MH, Bertrand D, et al. Oxidative stability of oil-in-water emulsions stabilised with protein or surfactant emulsifiers in various oxidation conditions. Food Chem. 2012;131(4):1360–1369.
  • Okuda S, McClements DJ, Decker EA. Impact of lipid physical state on the oxidation of methyl linolenate in oil-in-water emulsions. J Agric Food Chem. 2005;53(24):9624–9628.
  • Berton-Carabin CC, Coupland JN, Elias RJ. Effect of the lipophilicity of model ingredients on their location and reactivity in emulsions and solid lipid nanoparticles. Colloids Surfaces A Physicochem Eng Asp. 2013;431:9–17.
  • Small DM. The effects of glyceride structure on absorption and metabolism. Annu Rev Nutr. 1991;11:413–434.
  • Tauchi-Sato K, Ozeki S, Houjou T, et al. The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem. 2002;277(46):44507–44512.
  • Kroon PA, Krieger M. The mobility of cholesteryl esters in native and reconstituted low density lipoprotein as monitored by nuclear magnetic resonance spectroscopy. J Biol Chem. 1981;256(11):5340–5344.
  • Drummen GPC, Van Liebergen LCM, Op den Kamp JAF, et al. C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: (Micro)spectroscopic characterization and validation of methodology. Free Radic Biol Med. 2002;33(4):473–490.
  • Ni Z, Fedorova M. LipidLynxX: a data transfer hub to support integration of large scale lipidomics datasets. bioRxiv 2020.
  • Fujimoto T, Parton RG. Not just fat: the structure and function of the lipid droplet. Cold Spring Harb Perspect Biol. 2011;3:1–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.