2,520
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Heavy-ion beam-induced reactive oxygen species and redox reactions

, , &
Pages 450-460 | Received 09 Nov 2020, Accepted 02 Mar 2021, Published online: 17 Mar 2021

References

  • Dale WM. The effect of X-rays on the conjugated protein d-amino-acid oxidase. Biochem J. 1942;36(1-2):80–85.
  • Dale WM, Davies JV, Meredith WJ. Observations on the indirect action of ionizing radiation on aqueous solutions. Biochem J. 1946;40(3):xxxviii.
  • Barron ESG, Dickman S, Muntz JA, et al. Studies on the mechanism of action of ionizing radiations; inhibition of enzymes by X-rays. J Gen Physiol. 1949;32(4):537–552.
  • Goodhead DT. Mechanisms for the biological effectiveness of high-LET radiations. JRR. 1999;40(Suppl):1–13.
  • Chapman JD, Doern SD, Reuvers AP, et al. Radioprotection by DMSO of mammalian cells exposed to X-rays and to heavy charged-particle beams. Radiat Environ Biophys. 1979;16(1):29–41.
  • Roots R, Chatterjee A, Chang P, et al. Characterization of hydroxyl radical-induced damage after sparsely and densely ionizing irradiation. Int J Radiat Biol Relat Stud Phys Chem Med. 1985;47(2):157–166.
  • Raju MR, Amols HI, Carpenter SG. A combination of sensitizers with high LET radiations. Br J Cancer. 1978;37(Suppl. III):189–193.
  • Hirayama R, Furusawa Y, Fukawa T, et al. Repair kinetics of DNA-DSB induced by X-rays or carbon ions under oxic and hypoxic conditions. J Radiat Res. 2005;46(3):325–332.
  • Tsujii H, Mizoe J, Kamada T, et al. Clinical results of carbon ion radiotherapy at NIRS. JRR. 2007;48(Suppl. A):A1–A13.
  • Web site of National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan., Quantum Medical Science Directorate, Dept. of Charged Particle Therapy Research. [cited 2020 Oct 29]. Available from: https://www.qst.go.jp/site/nirs-english/1361.html.
  • Web site of National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan., Quantum Medical Science Directorate, Heavy Ion Radiotherapy. [cited 2020 Oct 29]. Available from: https://www.qst.go.jp/site/nirs-english/40056.html.
  • PDF brochure of Gunma University Heavy Ion Medical Center. [cited 2020 Oct 30]. Available from: https://heavy-ion.showa.gunma-u.ac.jp/en/pdf/panf001_en.pdf.
  • PDF brochure of SAGA HIMAT (SAGA Heavy-Ion Medical Accelerator in Tosu). [cited 2020 Oct 30]. Available from: https://www.saga-himat.jp/library/pdf/A-english.pdf.
  • Web site of “i-ROCK Facility,”i-ROCK (Ion-beam Radiation Oncology Center in Kanagawa). [cited 2020 Oct 30]. Available from: http://kcch.kanagawa-pho.jp/i-rock/english/facility/index.html.
  • Web site of “Greetings and department introduction,”Osaka HIMAK at Osaka Heavy Ion Therapy Center. [cited 2020 Oct 30]. Available from: https://www.osaka-himak.or.jp/en/about/message/.
  • Web site of “Greeting,”Hyogo Ion BeamMedical Center. [cited 2020 Oct 30]. Available from: https://www.hibmc.shingu.hyogo.jp/lang/english.html.
  • Web site of National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan., Quantum Medical Science Directorate, Dept. of Accelerator and Medical Physics. [cited 2020 Oct 29]. Available from: https://www.qst.go.jp/site/nirs-english/1359.html.
  • Kamada T. Clinical evidence of particle beam therapy (carbon). Int J Clin Oncol. 2012;17(2):85–88.
  • Noda K. Beam delivery method for carbon-ion radiotherapy with the heavy-ion medical accelerator in chiba. Int J Part Ther. 2016;2(4):481–489.
  • Ohno T. Particle radiotherapy with carbon ion beams. Epma J. 2013;4(1):9.
  • Takahashi W, Mori S, Nakajima M, et al. Carbon-ion scanning lung treatment planning with respiratory-gated phase-controlled rescanning: simulation study using 4-dimensional CT data. RadiatOncol. 2014;9:238.
  • Samuel AH. Theory of radiation chemistry. V. Generalized spur diffusion model. J Phys Chem. 1962;66(2):242–245.
  • Mozumder A, Magee JL. Model of tracks of ionizing radiations for radical reaction mechanism. Radiat Res. 1966;28(2):203–214.
  • Muroya Y, Plante I, Azzam EI, et al. High-LET ion radiolysis of water: visualization of the formation and evolution of ion tracks and relevance to the radiation-induced bystander effect. Radiat Res. 2006;165(4):485–491.
  • Conte V, Selva A, Colautti P. Track structure of carbon ion: new measurements and simulations. Radiat Phys Chem. 2020;168:108576.
  • Meesungnoen J, Jay-Gerin JP. High-LET radiolysis of liquid water with 1H+, 4He2+, 12C6+, and 20Ne9+ ions: Effects of multiple ionization. J Phys Chem A. 2005;109(29):6406–6419.
  • Yamashita S, Katsumura Y, Lin M, et al. Water radiolysis with heavy ions of energies up to 28 GeV. 3. Measurement of G(MV*+) in deaerated methyl viologen solutions containing various concentrations of sodium for mate and Monte Carlo simulation. Radiat Res. 2008;170(4):521–533.
  • Hüttermann J, Schaefer A, Kraft G. Free radicals induced in solid DNA by heavy ion bombardment. Adv Space Res. 1989;9(10):35–44.
  • Schaefer A, Huttermann J, Kraft G. Direct radiation action of heavy ions on DNA as studied by ESR-spectroscopy. Adv Space Res. 1992;12(2-3):45–49.
  • Becker D, Razskazovskii Y, Callaghan MU, et al. Electron spin resonance of DNA irradiated with a heavy-ion beam (16O8+): evidence for damage to the deoxyribose phosphate backbone. Radiat Res. 1996;146(4):361–368.
  • Raju MR, Gnanapurani M, Madhvanath U, et al. Relative biologic effectiveness and oxygen enhancement ratio at various depths of a 910-MeV helium ion beam. Acta Radiol Ther Phys Biol. 1971;10(3):353–357.
  • Raju MR, Gnanapurani M, Martins B, et al. Measurement of OER and RBE of a 910 MeV helium ion beam, using cultured cells (T-1). Radiology. 1972;102(2):425–428.
  • Yang TC, Tobias CA. Neoplastic cell transformation by energetic heavy ions and its modification with chemical agents. Adv Space Res. 1984;4(10):207–218.
  • Yang TC, Mei M, George KA, et al. DNA damage and repair in oncogenic transformation by heavy ion radiation. Adv Space Res. 1996;18(1-2):149–158.
  • Brenner DJ, Ward JF. Constraints on energy deposition and target size of multiply damaged sites associated with DNA double-strand breaks. Int J Radiat Biol. 1992;61(6):737–748.
  • Terato H, Ide H. Clustered DNA damage induced by heavy ion particles. Biol Sci Space. 2004;18(4):206–215.
  • Milligan JR, Aguilera JA, Paglinawan RA, Ward JF, et al. DNA strand break yields after post-high LET irradiation incubation with endonuclease-III and evidence for hydroxyl radical clustering. Int J Radiat Biol. 2001;77(2):155–164.
  • Moritake T, Tsuboi K, Anzai K, et al. ESR spin trapping of hydroxyl radicals in aqueous solution irradiated with high-LET carbon-ion beams. Radiat Res. 2003;159(5):670–675.
  • Taguchi M, Kojima T. Yield of OH radicals in water under high-density energy deposition by heavy-ion irradiation. Radiat Res. 2005;163(4):455–461.
  • Yamaguchi H, Uchihori Y, Yasuda N, et al. Estimation of yields of OH radicals in water irradiated by ionizing radiation. J Radiat Res. 2005;46(3):333–341.
  • Matsumoto K, Ueno M, Nakanishi I, et al. Density of hydroxyl radicals generated in an aqueous solution by irradiating carbon-ion beam. Chem Pharm Bull (Tokyo)). 2015;63(3):195–199.
  • Ueno M, Nakanishi I, Matsumoto K. Method for assessing X-ray-induced hydroxyl radical scavenging activity of biological compounds/materials. J ClinBiochemNutr. 2013;52(2):95–100.
  • Matsumoto K, Nyui M, Ueno M, et al. A quantitative analysis of carbon-ion beam-induced reactive oxygen species and redox reactions. J Clin Biochem Nutr. 2019;65(1):1–7.
  • Ogawa Y, Sekine-Suzuki E, Ueno M, et al. Localized hydroxyl radical generation at mmol/L and mol/L levels in water by photon irradiation. J Clin Biochem Nutr. 2018;63(2):97–101.
  • Carmichael AJ, Makino K, Riesz P. Quantitative aspects of ESR and spin trapping of hydroxyl radicals and hydrogen atoms in gamma-irradiated aqueous solutions. Radiat Res. 1984;100(2):222–234.
  • Ueno M, Nakanishi I, Matsumoto K. Generation of localized highly concentrated hydrogen peroxide clusters in water by X-rays. Free Radic Res. 2020;54(5):360–372.
  • LaVerne JA. OH radicals and oxidizing products in the gamma radiolysis of water. Radiat Res. 2000;153(2):196–200.
  • Baldacchino G, Brun E, Denden I, et al. Importance of radiolytic reactions during high-LET irradiation modalities: LET effect, role of O2 and radiosensitization by nanoparticles. Cancer Na. 2019;10(1):3.
  • Matsumoto K, Ogawa Y, Kamibayashi M, et al. Assessment of redox status in commercial bottled mineral water. J Clin Nutr Food Sci. 2018;1:29–34.
  • Matsumoto K, Aoki I, Nakanishi I, et al. Distribution of hydrogen peroxide-dependent reaction in a gelatin sample irradiated by carbon ion beam. Magn Reson Med Sci. 2010;9(3):131–140.
  • Baldacchino G, Le Parc D, Hickel B, et al. Direct observation of HO2/O2− free radical generated in water by a high-linear energy transfer pulsed heavy-ion beam. Radiat Res. 1998;149(2):128–133.
  • Matsumoto K, Nagata K, Yamamoto H, et al. Visualization of free radical reactions in an aqueous sample irradiated by 290 MeV carbon beam. Magn Reson Med. 2009;61(5):1033–1039.
  • Ziegler C, Bonnefont-Rousselot D, Delacroix S, et al. Effectiveness of protons and argon ions in initiating lipid peroxidation in low-density lipoproteins. Radiat Res. 1998;150(4):483–487.
  • Ziegler C, Wessels JM. Investigation of lipid peroxidation in liposomes induced by heavy ion irradiation. Radiat Environ Biophys. 1998;37(2):95–100.
  • Nakanishi I, Yamashita S, Shimokawa T, et al. Analysis of redox states of protic and aprotic solutions irradiated by low linear energy transfer carbon-ion beams using a 2,2-diphenyl-1-picrylhydrazyl radical. Org Biomol Chem. 2018;16(8):1272–1276.
  • Nakanishi I, Ohkubo K, Kamibayashi M, et al. Reactivity of 2,2-dipheniyl-1-picrylhydrazyl solubilized in water by β-cyclodextrin and its methylated derivative. Chemistry Select. 2016;1:3367–3370.
  • Nakanishi I, Ohkubo K, Imai K, et al. Solubilisation of a 2,2-diphenyl-1-picrylhydrazyl radical in water by β-cyclodextrin to evaluate the radical-scavenging activity of antioxidants in aqueous media. Chem Commun (Camb). 2015;51(39):8311–8314.