580
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Reactive oxygen species: the root cause of nanoparticle-induced toxicity in Drosophila melanogaster

ORCID Icon & ORCID Icon
Pages 919-935 | Received 09 Jul 2020, Accepted 01 Apr 2021, Published online: 20 Apr 2021

References

  • Love SA, Maurer-Jones MA, Thompson JW, et al. Assessing nanoparticle toxicity. Annu Rev Anal Chem. 2012;5:181–205.
  • Gajewicz A, Rasulev B, Dinadayalane TC, et al. Advancing risk assessment of engineered nanomaterials: application of computational approaches. Adv Drug Deliv Rev. 2012;64:1663–1693.
  • Kroll A, Pillukat MH, Hahn D, et al. Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm. 2009;72:370–377.
  • Barik BK, Mishra M. Nanoparticles as a potential teratogen: a lesson learnt from fruit fly. Nanotoxicology. 2019;13:258–284.
  • Gratton SE, Ropp PA, Pohlhaus PD, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA. 2008;105:11613–11618.
  • Abdal Dayem A, Hossain MK, Lee SB, et al. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. IJMS. 2017;18:120.
  • Colon J, Hsieh N, Ferguson A, et al. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine. 2010;6:698–705.
  • Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev. 2011;63:411–436.
  • Lemaitre B, Miguel-Aliaga I. The digestive tract of Drosophila melanogaster. Annu Rev Genet. 2013;47:377–404.
  • Kuraishi T, Binggeli O, Opota O, et al. Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Natl Acad Sci USA. 2011;108:15966–15971.
  • Buchon N, Osman D, David FP, et al. Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep. 2013;3:1725–1738.
  • Apidianakis Y, Rahme LG. Drosophila melanogaster as a model for human intestinal infection and pathology. Dis Model Mech. 2011;4:21–30.
  • Ahamed M, Posgai R, Gorey TJ, et al. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol. 2010;242:263–269.
  • Mikhaylov VI, Kryuchkova AV, Sitnikov PA, et al. Magnetite hydrosols with positive and negative surface charge of nanoparticles: stability and effect on the lifespan of Drosophila melanogaster. Langmuir. 2020;36:4405–4415.
  • Pappus SA, Mishra M. A Drosophila model to decipher the toxicity of nanoparticles taken through oral routes. In: Saquib Q, Faisal M, Al-Khedhairy A, editors. Cellular and molecular toxicology of nanoparticles. Cham (Switzerland): Springer; 2018. p. 311–322.
  • Alaraby M, Annangi B, Marcos R, et al. Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: a review. J Toxicol Environ Health B Crit Rev. 2016;19:65–104.
  • Pandey A, Chandra S, Chauhan LKS, et al. Cellular internalization and stress response of ingested amorphous silica nanoparticles in the midgut of Drosophila melanogaster. Biochim Biophys Acta. 2013;1830:2256–2266.
  • Bodmer R, Venkatesh TV. Heart development in Drosophila and vertebrates: conservation of molecular mechanisms. Dev Genet. 1998;22:181–186.
  • Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 1999;17:593–623.
  • Márkus R, Laurinyecz B, Kurucz É, et al. Sessile hemocytes as a hematopoietic compartment in Drosophila melanogaster. Proc Natl Acad Sci USA. 2009;106:4805–4809.
  • Crozatier M, Vincent A. Drosophila: a model for studying genetic and molecular aspects of haematopoiesis and associated leukaemias. Dis Model Mech. 2011;4:439–445.
  • Hoffmann JA, Kafatos FC, Janeway CA, et al. Phylogenetic perspectives in innate immunity. Science. 1999;284:1313–1318.
  • Adams MD, Celniker SE, Holt RA, et al. The genome sequence of Drosophila melanogaster. Science. 2000;287:2185–2195.
  • Sarkar A, Irwin M, Singh A, et al. Alzheimer’s disease: the silver tsunami of the 21(st) century. Neural Regen Res. 2016;11:693–697.
  • Wawersik S, Maas RL. Vertebrate eye development as modeled in Drosophila. Hum Mol Genet. 2000;9:917–925.
  • Boekhoff‐Falk G. Hearing in Drosophila: development of Johnston’s organ and emerging parallels to vertebrate ear development. Developmental dynamics: an official publication of the American Association of. Anatomists. 2005;232:550–558.
  • Lu Q, Senthilan PR, Effertz T, et al. Using Drosophila for studying fundamental processes in hearing. Integr Comp Biol. 2009;49:674–680.
  • Lee AR, Lee SJ, Lee M, et al. Editor’s highlight: a genome-wide screening of target genes against silver nanoparticles in fission yeast. Toxicol Sci. 2018;161:171–185.
  • He W, Zhou YT, Wamer WG, et al. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials. 2012;33:7547–7555.
  • Li Y, Qin T, Ingle T, et al. Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Arch Toxicol. 2017;91:509–519.
  • Liu X, Vinson D, Abt D, et al. Differential toxicity of carbon nanomaterials in Drosophila: larval dietary uptake is benign, but adult exposure causes locomotor impairment and mortality. Environ Sci Technol. 2009;43:6357–6363.
  • de Andrade LR, Brito AS, de Souza Melero AMG, et al. Absence of mutagenic and recombinagenic activity of multi-walled carbon nanotubes in the Drosophila wing-spot test and Allium cepa test. Ecotoxicol Environ Saf. 2014;99:92–97.
  • Vega-Alvarez S, Herrera A, Rinaldi C, et al. Tissue-specific direct microtransfer of nanomaterials into Drosophila embryos as a versatile in vivo test bed for nanomaterial toxicity assessment. Int J Nanomedicine. 2014;9:2031–2041.
  • Strawn ET, Cohen CA, Rzigalinski BA. Cerium oxide nanoparticles increase lifespan and protect against free radical‐mediated toxicity. FASEB J. 2006;20:A1356–A1356.
  • Carlson C, Hussain SM, Schrand AM, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112:13608–13619.
  • Xu H, Qu F, Xu H, et al. Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7. Biometals. 2012;25:45–53.
  • Cui Y, Gong X, Duan Y, et al. Hepatocyte apoptosis and its molecular mechanisms in mice caused by titanium dioxide nanoparticles. J Hazard Mater. 2010;183:874–880.
  • Panacek A, Prucek R, Safarova D, et al. Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ Sci Technol. 2011;45:4974–4979.
  • Demir E, Vales G, Kaya B, et al. Genotoxic analysis of silver nanoparticles in Drosophila. Nanotoxicology. 2011;5:417–424.
  • Tyagi S, Arya A, Tyagi PK, et al. Development of Drosophila melanogaster for assessing metal nanoparticles interaction. Int. J. Basic Appl. Biol. 2016;3:132–135.
  • Perez RG, Hastings TG. Could a loss of alpha-synuclein function put dopaminergic neurons at risk? J Neurochem. 2004;89:1318–1324.
  • Raj A, Shah P, Agrawal N. Dose-dependent effect of silver nanoparticles (AgNPs) on fertility and survival of Drosophila: an in-vivo study. PLoS One. 2017;12:e0178051.
  • Armstrong N, Ramamoorthy M, Lyon D, et al. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One. 2013;8:e53186.
  • Benetti F, Bregoli L, Olivato I, et al. Effects of metal(loid)-based nanomaterials on essential element homeostasis: the central role of nanometallomics for nanotoxicology. Metallomics. 2014;6:729–747.
  • Tian H, Eom HJ, Moon S, et al. Development of biomarker for detecting silver nanoparticles exposure using a GAL4 enhancer trap screening in Drosophila. Environ Toxicol Pharmacol. 2013;36:548–556.
  • Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev. 2005;105:1547–1562.
  • Pompa PP, Vecchio G, Galeone A, et al. In vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster. Nano Res. 2011;4:405–413.
  • Vecchio G, Galeone A, Brunetti V, et al. Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster. Nanomedicine. 2012;8:1–7.
  • Hadrup N, Sharma AK, Poulsen M, et al. Toxicological risk assessment of elemental gold following oral exposure to sheets and nanoparticles – a review. Regul Toxicol Pharmacol. 2015;72:216–221.
  • Wang S, Tan KL, Agosto MA, et al. The retromer complex is required for rhodopsin recycling and its loss leads to photoreceptor degeneration. PLoS Biol. 2014;12:e1001847.
  • Anand AS, Gahlot U, Prasad DN, et al. Aluminum oxide nanoparticles mediated toxicity, loss of appendages in progeny of Drosophila melanogaster on chronic exposure. Nanotoxicology. 2019;13:977–989.
  • Huang N, Yan Y, Xu Y, et al. Alumina nanoparticles alter rhythmic activities of local interneurons in the antennal lobe of Drosophila. Nanotoxicology. 2013;7:212–220.
  • Carmona ER, Inostroza-Blancheteau C, Rubio L, et al. Genotoxic and oxidative stress potential of nanosized and bulk zinc oxide particles in Drosophila melanogaster. Toxicol Ind Health. 2016;32:1987–2001.
  • Alaraby M, Romero S, Hernández A, et al. Toxic and genotoxic effects of silver nanoparticles in Drosophila. Environ Mol Mutagen. 2019;60:277–285.
  • Han X, Geller B, Moniz K, et al. Monitoring the developmental impact of copper and silver nanoparticle exposure in Drosophila and their microbiomes. Sci Total Environ. 2014;487:822–829.
  • Weir A, Westerhoff P, Fabricius L, et al. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol. 2012;46:2242–2250.
  • Philbrook NA, Walker VK, Afrooz AN, et al. Investigating the effects of functionalized carbon nanotubes on reproduction and development in Drosophila melanogaster and CD-1 mice. Reprod Toxicol. 2011;32:442–448.
  • Jovanović B, Cvetković VJ, Mitrović TL. Effects of human food grade titanium dioxide nanoparticle dietary exposure on Drosophila melanogaster survival, fecundity, pupation and expression of antioxidant genes. Chemosphere. 2016;144:43–49.
  • Patel J, Champavat V. Toxicity of nanomaterials on the gastrointestinal tract. In: Sutariya VB, Pathak Y, editors. Biointeractions of nanomaterials. Boca Raton (FL): CRC Press; 2014. p. 259.
  • Sabat D, Patnaik A, Ekka B, et al. Investigation of titania nanoparticles on behaviour and mechanosensory organ of Drosophila melanogaster. Physiol Behav. 2016;167:76–85.
  • Vales G, Demir E, Kaya B, et al. Genotoxicity of cobalt nanoparticles and ions in Drosophila. Nanotoxicology. 2013;7:462–468.
  • Galeone A, Vecchio G, Malvindi M, et al. In vivo assessment of CdSe-ZnS quantum dots: coating dependent bioaccumulation and genotoxicity. Nanoscale. 2012;4:6401–6407.
  • Chen H, Wang B, Feng W, et al. Oral magnetite nanoparticles disturb the development of Drosophila melanogaster from oogenesis to adult emergence. Nanotoxicology. 2015;9:302–312.
  • Carmona ER, García-Rodríguez A, Marcos R. Genotoxicity of copper and nickel nanoparticles in somatic cells of Drosophila melanogaster. J Toxicol. 2018;2018:1–8.
  • Mishra M, Sabat D, Ekka B, et al. Oral intake of zirconia nanoparticle alters neuronal development and behaviour of Drosophila melanogaster. J Nanoparticle Res. 2017;19:282.
  • Pappus SA, Ekka B, Sahu S, et al. A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster. J Nanoparticle Res. 2017;19:136.
  • Sahu S, Mishra M. Hydroxyapatite nanoparticle causes sensory organ defects by targeting the retromer complex in Drosophila melanogaster. NanoImpact. 2020;19:100237.
  • Demir E, Kocaoğlu S, Kaya B. Antigenotoxic properties of chlorophyllin and chlorophylls in the Drosophila wing spot test. Fresen Environ Bull. 2010;19:3131–3138.
  • Mallick T, Karmakar A, Bag J, et al. Carbazole analog anchored fluorescent silica nanoparticle showing enhanced biocompatibility and selective sensing ability towards biomacromolecule. Dyes Pigm. 2020;173:107994.
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161:505–522.
  • Pavot V, Berthet M, Rességuier J, et al. Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery. Nanomedicine. 2014;9:2703–2718.
  • Legaz S, Exposito JY, Lethias C, et al. Evaluation of polylactic acid nanoparticles safety using Drosophila model. Nanotoxicology. 2016;10:1136–1143.
  • Jiang S, Teng CP, Puah WC, et al. Oral administration and selective uptake of polymeric nanoparticles in Drosophila larvae as an in vivo model. ACS Biomater Sci Eng. 2015;1:1077–1084.
  • Semete B, Booysen L, Kalombo L, et al. In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles. Toxicol Appl Pharmacol. 2010;249:158–165.
  • Mishra PK, Ekielski A, Mukherjee S, et al. Wood-based cellulose nanofibrils: haemocompatibility and impact on the development and behaviour of Drosophila melanogaster. Biomolecules. 2019;9:363.
  • Siddiqui L, Bag J, Mittal D, et al. Assessing the potential of lignin nanoparticles as drug carrier: synthesis, cytotoxicity and genotoxicity studies. Int J Biol Macromol. 2020;152:786–802.
  • Lykkesfeldt J. Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clin Chim Acta. 2007;380:50–58.
  • Magwere T, West M, Riyahi K, et al. The effects of exogenous antioxidants on lifespan and oxidative stress resistance in Drosophila melanogaster. Mech Ageing Dev. 2006;127:356–370.
  • Morrow G, Tanguay RM. Heat shock proteins and aging in Drosophila melanogaster. Semin Cell Dev Biol. 2003;14:291–299. Elsevier. p
  • Jedlicka P, Mortin MA, Wu C. Multiple functions of Drosophila heat shock transcription factor in vivo. Embo J. 1997;16:2452–2462.
  • Calabrese V, Scapagnini G, Ravagna A, et al. Regional distribution of heme oxygenase, HSP70, and glutathione in brain: relevance for endogenous oxidant/antioxidant balance and stress tolerance. J Neurosci Res. 2002;68:65–75.
  • Cash TP, Pan Y, Simon MC. Reactive oxygen species and cellular oxygen sensing. Free Radic Biol Med. 2007;43:1219–1225.
  • Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, et al. Mitochondria and reactive oxygen species. Free Radic Biol Med. 2009;47:333–343.
  • Posgai R, Cipolla-McCulloch CB, Murphy KR, et al. Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, reproductive effort, and viability: size, coatings and antioxidants matter. Chemosphere. 2011;85:34–42.
  • Mukhopadhyay I, Nazir A, Saxena D, et al. Heat shock response: hsp70 in environmental monitoring. J Biochem Mol Toxicol. 2003;17:249–254.
  • Siddique HR, Gupta SC, Mitra K, et al. Adverse effect of tannery waste leachates in transgenic Drosophila melanogaster: role of ROS in modulation of Hsp70, oxidative stress and apoptosis. J Appl Toxicol. 2008;28:734–748.
  • Siddique YH, Fatima A, Jyoti S, et al. Evaluation of the toxic potential of graphene copper nanocomposite (GCNC) in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg 9. PloS One. 2013;8:e80944.
  • Morrow G, Samson M, Michaud S, et al. Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J. 2004;18:598–599.
  • Shemetov AA, Seit ‐Nebi AS, Gusev NB. Structure, properties, and functions of the human small heat-shock protein HSP22 (HspB8, H11, E2IG1): a critical review . J Neurosci Res. 2008;86:264–269.
  • Carmona ER, Inostroza-Blancheteau C, Obando V, et al. Genotoxicity of copper oxide nanoparticles in Drosophila melanogaster. Mutat Res Genet Toxicol Environ Mutagen. 2015;791:1–11.
  • Zhang Y, Wang Z, Li X, et al. Dietary iron oxide nanoparticles delay aging and ameliorate neurodegeneration in drosophila. Adv Mater. 2016;28:1387–1393.
  • Adolfsson K, Schneider M, Hammarin G, et al. Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function. Nanotechnology. 2013;24:285101.
  • Alaraby M, Annangi B, Hernández A, et al. A comprehensive study of the harmful effects of ZnO nanoparticles using Drosophila melanogaster as an in vivo model. J Hazard Mater. 2015;296:166–174.
  • Ng CT, Yong LQ, Hande MP, et al. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomedicine. 2017;12:1621–1637.
  • de Melo Reis É, de Rezende AAA, Santos DV, et al. Assessment of the genotoxic potential of two zinc oxide sources (amorphous and nanoparticles) using the in vitro micronucleus test and the in vivo wing somatic mutation and recombination test. Food Chem Toxicol. 2015;84:55–63.
  • De Carli RF, Chaves DS, Cardozo TR, et al. Evaluation of the genotoxic properties of nickel oxide nanoparticles in vitro and in vivo. Mutat Res. 2018;836:47–53.
  • Wu Z, Du Y, Xue H, et al. Aluminum induces neurodegeneration and its toxicity arises from increased iron accumulation and reactive oxygen species (ROS) production. Neurobiol Aging. 2012;33:199.e1–e1-199. e12.
  • Mishra M, Sabat D, Ekka B, et al. Oral intake of zirconia nanoparticle alters neuronal development and behaviour of Drosophila melanogaster. J Nanopart Res. 2017;19:282.
  • Pappus SA, Ekka B, Sahu S, et al. A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster. J Nanopart Res. 2017;19:136.
  • Dan P, Sundararajan V, Ganeshkumar H, et al. Evaluation of hydroxyapatite nanoparticles-induced in vivo toxicity in Drosophila melanogaster. Appl Surf Sci. 2019;484:568–577.
  • Sundararajan V, Dan P, Kumar A, et al. Drosophila melanogaster as an in vivo model to study the potential toxicity of cerium oxide nanoparticles. Appl Surf Sci . 2019;490:70–80.
  • Demir E, Aksakal S, Turna F, et al. In vivo genotoxic effects of four different nano-sizes forms of silica nanoparticles in Drosophila melanogaster. J Hazard Mater. 2015;283:260–266.
  • Brunetti V, Chibli H, Fiammengo R, et al. InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment. Nanoscale. 2013;5:307–317.
  • Priyadarsini S, Sahoo SK, Sahu S, et al. Oral administration of graphene oxide nano-sheets induces oxidative stress, genotoxicity, and behavioral teratogenicity in Drosophila melanogaster. Environ Sci Pollut Res Int. 2019;26:19560–19574.
  • Giraudo M, Unnithan GC, Le Goff G, et al. Regulation of cytochrome P450 expression in Drosophila: genomic insights. Pestic Biochem Physiol. 2010;97:115–122.
  • Chung H, Sztal T, Pasricha S, et al. Characterization of Drosophila melanogaster cytochrome P450 genes. Proc Natl Acad Sci U S A. 2009;106:5731–5736.
  • Pandey H, Saini S, Singh SP, et al. Candle soot derived carbon nanoparticles: an assessment of cellular and progressive toxicity using Drosophila melanogaster model. Comp Biochem Physiol C Toxicol Pharmacol. 2020;228:108646.
  • Siddique YH, Khan W, Khanam S, et al. Toxic potential of synthesized graphene zinc oxide nanocomposite in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. BioMed Res Int. 2014;2014:382124.
  • Medema RH, Kops GJ, Bos JL, et al. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature. 2000;404:782–787.
  • Essers J, van Cappellen WA, Theil AF, et al. Dynamics of relative chromosome position during the cell cycle. Mol Biol Cell. 2005;16:769–775.
  • Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005;24:7410–7425.
  • Vermeulen CJ, Loeschcke V. Longevity and the stress response in Drosophila. Exp Gerontol. 2007;42:153–159.
  • Ha EM, Oh CT, Ryu JH, et al. An antioxidant system required for host protection against gut infection in Drosophila. Dev Cell. 2005;8:125–132.
  • Doganlar O, Doganlar BZ. Responses of antioxidant enzymes and heat shock proteins in Drosophila to treatment with a pesticide mixture. Arch Biol Sci. 2015;67:869–876.
  • Cross CE, Valacchi G, Schock B, et al. Environmental oxidant pollutant effects on biologic systems: a focus on micronutrient antioxidant-oxidant interactions. Am J Respir Crit Care Med. 2002;166:S44–S50.
  • Wilson M. Drosophila melanogaster as a model organism for understanding the interrelationship of micronutrient antioxidants and atmospheric oxidative stress. University of California, Davis; 2005.
  • Khanna P, Ong C, Bay BH, et al. Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials. 2015;5:1163–1180.
  • Anandan R, Ganesan B, Obulesu T, et al. Antiaging effect of dietary chitosan supplementation on glutathione-dependent antioxidant system in young and aged rats. Cell Stress Chaperones. 2013;18:121–125.
  • Cho Y, Shi R, Borgens RB. Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury. J Biol Eng. 2010;4:2–11.
  • Fang IM, Yang CH, Yang CM, et al. Chitosan oligosaccharides attenuates oxidative-stress related retinal degeneration in rats. PLoS One. 2013;8:e77323.
  • Kumar PP, K V HP. Low Molecular Weight Chitosan (∼20 kDa) protects acrylamide induced oxidative stress in D. melanogaster by restoring dopamine and KIF5B levels. Carbohydr Polym. 2019;222:115005.
  • Lu B, Lv X, Le Y. Chitosan-modified PLGA nanoparticles for control-released drug delivery. Polymers. 2019;11:304.
  • Chen B, Li J, Borgens RB. Neuroprotection by chitosan nanoparticles in oxidative stress-mediated injury. BMC Res Notes. 2018;11:1–7.
  • Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236:313–322.
  • Itoh K, Tong KI, Yamamoto M. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med. 2004;36:1208–1213.
  • Liang R, Ghaffari S. Stem cells, redox signaling, and stem cell aging. Antioxid Redox Signal. 2014;20:1902–1916.
  • Baeg E, Sooklert K, Sereemaspun A. Copper oxide nanoparticles cause a dose-dependent toxicity via inducing reactive oxygen species in drosophila. Nanomaterials. 2018;8:824.
  • Liu Y, Kern JT, Walker JR, et al. A genomic screen for activators of the antioxidant response element. Proc Natl Acad Sci U S A. 2007;104:5205–5210.
  • Charroux B, Royet J. Drosophila immune response: from systemic antimicrobial peptide production in fat body cells to local defense in the intestinal tract. Fly. 2010;4:40–47.
  • Michel T, Reichhart JM, Hoffmann JA, et al. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature. 2001;414:756–759.
  • Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster-from microbial recognition to whole-organism physiology. Nat Rev Immunol. 2014;14:796–810.
  • Ng CT, Yu LE, Ong CN, et al. The use of Drosophila melanogaster as a model organism to study immune-nanotoxicity. Nanotoxicology. 2019;13:429–446.
  • Hiroyasu A, DeWitt DC, Goodman AG. Extraction of hemocytes from Drosophila melanogaster larvae for microbial infection and analysis. JoVE. 2018;(135):e57077.
  • Zettervall CJ, Anderl I, Williams MJ, et al. A directed screen for genes involved in Drosophila blood cell activation. Proc Natl Acad Sci USA. 2004;101:14192–14197.
  • Tang H. Regulation and function of the melanization reaction in Drosophila. Fly. 2009;3:105–111.
  • Canesi L, Procházková P. The invertebrate immune system as a model for investigating the environmental impact of nanoparticles. In: Boraschi D, Duschl A, editors. Nanoparticles and the immune system. Oxford (UK): Academic Press; 2014. p. 91–112.
  • Leulier F, Rodriguez A, Khush RS, et al. The Drosophila caspase Dredd is required to resist gram-negative bacterial infection . EMBO Rep. 2000;1:353–358.
  • Mao BH, Chen ZY, Wang YJ, et al. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep. 2018;8:1–16.
  • Alaraby M, Hernández A, Marcos R. New insights in the acute toxic/genotoxic effects of CuO nanoparticles in the in vivo Drosophila model. Nanotoxicology. 2016;10:749–760.
  • Arms L, Smith DW, Flynn J, et al. Advantages and limitations of current techniques for analyzing the biodistribution of nanoparticles. Front Pharmacol. 2018;9:802.
  • Vishwakarma V, Samal SS, Manoharan N. Safety and risk associated with nanoparticles-a review. JMMCE. 2010;09:455–459.
  • Hagens WI, Oomen AG, de Jong WH, et al. What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol. 2007;49:217–229.
  • Leite-Silva VR, Liu DC, Sanchez WY, et al. Effect of flexing and massage on in vivo human skin penetration and toxicity of zinc oxide nanoparticles. Nanomedicine. 2016;11:1193–1205.
  • Sadrieh N, Wokovich AM, Gopee NV, et al. Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles. Toxicol Sci. 2010;115:156–166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.