241
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Metabolomics analysis of the effects of quercetin on Cd-induced hepatotoxicityin rats

, , , , , , , , & show all
Pages 185-195 | Received 08 Oct 2021, Accepted 05 Apr 2022, Published online: 29 Apr 2022

References

  • Alese MO, Agbaje MA, Alese OO. Cadmium induced damage in Wistar rats, ameliorative potentials of progesterone. J Trace Elem Med Biol. 2018;50:276–282.
  • Satarug S, Vesey DA, Gobe GC. Health risk assessment of dietary cadmium intake: do current guidelines indicate how much is safe? Environ Health Perspect. 2017;125(3):284–288.
  • Genchi G, Sinicropi MS, Lauria G, et al. The effects of cadmium toxicity. Int J Environ Res Public Health. 2020;17(11): 3782
  • Wajdzik M, Halecki W, Kalarus K, et al. Relationship between heavy metal accumulation and morphometric parameters in European hare (Lepus europaeus) inhabiting various types of landscapes in Southern Poland. Ecotoxicol Environ Saf. 2017;145:16–23.
  • Mershiba SD, Dassprakash MV, Saraswathy SD. Protective effect of naringenin on hepatic and renal dysfunction and oxidative stress in arsenic intoxicated rats. Mol Biol Rep. 2013;40(5):3681–3691.
  • Goodarzi Z, Karami E, Yousefi S, et al. Hepatoprotective effect of atorvastatin on cadmium chloride induced hepatotoxicity in rats. Life Sci. 2020;254:117770.
  • Sanjeev S, Bidanchi RM, Murthy MK, et al. Influence of ferulic acid consumption in ameliorating the cadmium-induced liver and renal oxidative damage in rats. Environ Sci Pollut Res Int. 2019;26(20):20631–20653.
  • Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol. 2008;585(2–3):325–337.
  • Harnly JM, Doherty RF, Beecher GR, et al. Flavonoid content of U.S. fruits, vegetables, and nuts. J Agric Food Chem. 2006;54(26):9966–9977.
  • Lee S, Lee J, Lee H, et al. Relative protective activities of quercetin, quercetin-3-glucoside, and rutin in alcohol-induced liver injury. J Food Biochem. 2019;43(11):e13002.
  • Zargar S, Siddiqi NJ, Al Daihan SK, et al. Protective effects of quercetin on cadmium fluoride induced oxidative stress at different intervals of time in mouse liver. Acta Biochim Pol. 2015;62(2):207–213.
  • Vicente-Sánchez C, Egido J, Sánchez-González PD, et al. Effect of the flavonoid quercetin on cadmium-induced hepatotoxicity. Food Chem Toxicol. 2008;46(6):2279–2287.
  • Prabu SM, Shagirtha K, Renugadevi J. Amelioration of cadmium-induced oxidative stress, impairment in lipids and plasma lipoproteins by the combined treatment with quercetin and α-tocopherol in rats. J Food Sci. 2010;75(7):T132–T140.
  • Alshammari GM, Al-Qahtani WH, AlFaris NA, et al. Quercetin prevents cadmium chloride-induced hepatic steatosis and fibrosis by downregulating the transcription of miR-21. Biofactors. 2021;47(3):489–505.
  • Xu Y, Han J, Dong J, et al. Metabolomics characterizes the effects and mechanisms of quercetin in nonalcoholic fatty liver disease development. Int J Mol Sci. 2019;20(5):1220.
  • Gika HG, Theodoridis GA, Plumb RS, et al. Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. J Pharm Biomed Anal. 2014;87:12–25.
  • Tran H, McConville M, Loukopoulos P. Metabolomics in the study of spontaneous animal diseases. J Vet Diagn Invest. 2020;32(5):635–647.
  • Jia S, Guan T, Zhang X, et al. Serum metabonomics analysis of quercetin against the toxicity induced by cadmium in rats. J Biochem Mol Toxicol. 2020;34(4):e22448.
  • Ranka S, Gee JM, Biro L, et al. Development of a food frequency questionnaire for the assessment of quercetin and naringenin intake. Eur J Clin Nutr. 2008;62(9):1131–1138.
  • Zhang Y, Li Y, Cao C, et al. Dietary flavonol and flavone intakes and their major food sources in Chinese adults. Nutr Cancer. 2010;62(8):1120–1127.
  • Wang Y, Ding WX, Li T. Cholesterol and bile acid-mediated regulation of autophagy in fatty liver diseases and atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(7):726–733.
  • Alshehri AS, El-Kott AF, El-Kenawy AE, et al. Cadmium chloride induces non-alcoholic fatty liver disease in rats by stimulating miR-34a/SIRT1/FXR/p53 axis. Sci Total Environ. 2021;784:147182.
  • Zhang M, Xie Z, Gao W, et al. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats. Nutr Res. 2016;36(3):271–279.
  • Li M, Cai SY, Boyer JL. Mechanisms of bile acid mediated inflammation in the liver. Mol Aspects Med. 2017;56:45–53.
  • Feng SL, Zhang J, Jin H, et al. A network pharmacology study of the molecular mechanisms of hypericum japonicum in the treatment of cholestatic hepatitis with validation in an alpha-naphthylisothiocyanate (ANIT) hepatotoxicity rat model. Med Sci Monit. 2021;27:e928402.
  • Otte K, Kranz H, Kober I, et al. Identification of farnesoid X receptor beta as a novel mammalian nuclear receptor sensing lanosterol. Mol Cell Biol. 2003;23(3):864–872.
  • Sinal CJ, Tohkin M, Miyata M, et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000;102(6):731–744.
  • Azarmehr Z, Ranji N, Khazaei Koohpar Z, et al. The effect of N-acetyl cysteine on the expression of fxr (Nr1h4), LXRα (Nr1h3) and Sirt1 genes, oxidative stress, and apoptosis in the liver of rats exposed to different doses of cadmium. Mol Biol Rep. 2021;48(3):2533–2542.
  • Lamers C, Schubert-Zsilavecz M, Merk D. Medicinal chemistry and pharmacological effects of farnesoid X receptor (FXR) antagonists. Curr Top Med Chem. 2014;14(19):2188–2205.
  • Kim E-H, Na H-K, Kim D-H, et al. 15-Deoxy-Delta12,14-prostaglandin J2 induces COX-2 expression through akt-driven AP-1 activation in human breast cancer cells: a potential role of ROS. Carcinogenesis. 2008;29(4):688–695.
  • Takata K, Kitamura Y, Umeki M, et al. Possible involvement of small oligomers of amyloid-beta peptides in 15-deoxy-Delta 12,14 prostaglandin J2-sensitive microglial activation. J Pharmacol Sci. 2003;91(4):330–333.
  • Rao Y, Wen Q, Liu R, et al. PL-S2, a homogeneous polysaccharide from radix puerariae lobatae, attenuates hyperlipidemia via farnesoid X receptor (FXR) pathway-modulated bile acid metabolism. Int J Biol Macromol. 2020;165(Pt B):1694–1705.
  • Wang S, Sheng F, Zou L, et al. Hyperoside attenuates non-alcoholic fatty liver disease in rats via cholesterol metabolism and bile acid metabolism. J Adv Res. 2021;34:109–122.
  • Zhai Q, Liu Y, Wang C, et al. Increased cadmium excretion due to oral administration of Lactobacillus plantarum strains by regulating enterohepatic circulation in mice. J Agric Food Chem. 2019;67(14):3956–3965.
  • Bai L, Li H. Innate immune regulatory networks in hepatic lipid metabolism. J Mol Med. 2019;97(5):593–604.
  • Bou Khalil M, Hou W, Zhou H, et al. Lipidomics era: accomplishments and challenges. Mass Spectrom Rev. 2010;29(6):877–929.
  • van der Veen JN, Kennelly JP, Wan S, et al. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta Biomembr. 2017;1859 (9 Pt B):1558–1572.
  • Wójcicka G, Zaręba M, Warpas A, et al. The effect of exenatide (a GLP-1 analog) and sitagliptin (a DPP-4 inhibitor) on plasma platelet-activating factor acetylhydrolase (PAF-AH) activity and concentration in normal and fructose-fed rats. Eur J Pharmacol. 2019;850:180–189.
  • Das UN. Infection, inflammation, and polyunsaturated fatty acids. Nutrition. 2011;27(10):1080–1084.
  • Modi HR, Katyare SS. Effect of treatment with cadmium on structure-function relationships in rat liver mitochondria: studies on oxidative energy metabolism and lipid/phospholipids profiles. J Membr Biol. 2009;232(1–3):47–57.
  • Pisonero-Vaquero S, Martínez-Ferreras Á, García-Mediavilla MV, et al. Quercetin ameliorates dysregulation of lipid metabolism genes via the PI3K/AKT pathway in a diet-induced mouse model of nonalcoholic fatty liver disease. Mol Nutr Food Res. 2015;59(5):879–893.
  • Peng J, Li Q, Li K, et al. Quercetin improves glucose and lipid metabolism of diabetic rats: involvement of akt signaling and SIRT1. J Diabetes Res. 2017;2017:3417306.
  • Gauster M, Rechberger G, Sovic A, et al. Endothelial lipase releases saturated and unsaturated fatty acids of high density lipoprotein phosphatidylcholine. J Lipid Res. 2005;46(7):1517–1525.
  • Gonzalez E, van Liempd S, Conde-Vancells J, et al. Serum UPLC-MS/MS metabolic profiling in an experimental model for acute-liver injury reveals potential biomarkers for hepatotoxicity. Metabolomics. 2012;8(6):997–1011.
  • Qu Y, Zhang H-L, Zhang X-P, et al. Arachidonic acid attenuates brain damage in a rat model of ischemia/reperfusion by inhibiting inflammatory response and oxidative stress. Hum Exp Toxicol. 2018;37(2):135–141.
  • Kudo N, Waku K. Cadmium suppresses Delta 9 desaturase activity in rat hepatocytes. Toxicology. 1996;114(2):101–111.
  • Winiarska-Mieczan A. Protective effect of tea against lead and cadmium-induced oxidative stress-a review. Biometals. 2018;31(6):909–926.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.