187
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A new mitochondrial probe combining pyrene and a triphenylphosphonium salt for cellular oxygen and free radical detection via fluorescence lifetime measurements

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 258-272 | Received 14 Dec 2021, Accepted 10 May 2022, Published online: 30 Jun 2022

References

  • Kuznetsov AV, Kehrer I, Kozlov AV, et al. Mitochondrial ROS production under cellular stress: comparison of different detection methods. Anal Bioanal Chem. 2011;400(8):2383–2390.
  • Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.
  • Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–795.
  • Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev. 1998;78(2):547–581.
  • Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148(6):1145–1159.
  • Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13.
  • Chen Q, Vazquez EJ, Moghaddas S, et al. Production of reactive oxygen species by mitochondria: Central role of complex III. J Biol Chem. 2003;278(38):36027–36031.
  • Chen Y-R, Zweier JL. Cardiac mitochondria and reactive oxygen species generation. Circ Res. 2014;114(3):524–537.
  • Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(Pt 2):335–344.
  • Dikalov S. Cross talk between mitochondria and NADPH oxidases. Free Radic Biol Med. 2011;51(7):1289–1301.
  • Herb M, Schramm M. Functions of ROS in macrophages and antimicrobial immunity. Antioxidants. 2021;10(2):313.
  • Kirkinezos IG, Moraes CT. Reactive oxygen species and mitochondrial diseases. Semin Cell Dev Biol. 2001;12(6):449–457.
  • Head E. Antioxidants combined with behavioral enrichment can slow brain aging. In: Bondy S, Maiese K, editors. Aging and Age-Related disorders. Totowa (NJ): Humana Press; 2010. p. 381–397.
  • Head E. Oxidative damage and cognitive dysfunction: antioxidant treatments to promote healthy brain aging. Neurochem Res. 2009;34(4):670–678.
  • O'Connor PM, Gutterman DD. Resurrecting hope for antioxidant treatment of cardiovascular disease: focus on mitochondria. Circ Res. 2010;107(1):9–11.
  • Víctor V, Apostolova N, Herance R, et al. Oxidative stress and mitochondrial dysfunction in atherosclerosis: mitochondria-targeted antioxidants as potential therapy. Curr Med Chem. 2009;16(35):4654–4667.
  • Zhao H, Kalivendi S, Zhang H, et al. Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic. Biol. Med. 2003;34(11):1359–1368.
  • Zielonka J, Hardy M, Kalyanaraman B. HPLC study of oxidation products of hydroethidine in chemical and biological systems: ramifications in superoxide measurements. Free Radic Biol Med. 2009;46(3):329–338.
  • Zielonka J, Kalyanaraman B. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med. 2010;48(8):983–1001.
  • Šnyrychová I, Ayaydin F, Hideg É. Detecting hydrogen peroxide in leaves in vivo - a comparison of methods. Physiol Plant. 2009;135(1):1–18.
  • Murphy MP, Holmgren A, Larsson N-G, et al. Unraveling the biological roles of reactive oxygen species. Cell Metab. 2011;13(4):361–366.
  • Kalyanaraman B, Dranka BP, Hardy M, et al. HPLC-based monitoring of products formed from hydroethidine-based fluorogenic probes-the ultimate approach for intra- and extracellular superoxide detection. Biochim Biophys Acta. 2014;1840(2):739–744.
  • Zhao H, Joseph J, Fales HM, et al. Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proc Natl Acad Sci U S A. 2005;102(16):5727–5732.
  • Sikora A, Zielonka J, Adamus J, et al. Reaction between peroxynitrite and triphenylphosphonium-substituted arylboronic acid isomers: identification of diagnostic marker products and biological implications. Chem Res Toxicol. 2013;26(6):856–867.
  • Sikora A, Zielonka J, Lopez M, et al. Reaction between peroxynitrite and boronates: EPR spin-trapping, HPLC analyses, and quantum mechanical study of the free radical pathway. Chem Res Toxicol. 2011;24(5):687–697.
  • Cochemé HM, Logan A, Prime TA, et al. Using the mitochondria-targeted ratiometric mass spectrometry probe MitoB to measure H2O2 in living drosophila. Nat Protoc. 2012;7(5):946–958.
  • Cochemé HM, Quin C, McQuaker SJ, et al. Measurement of H2O2 within living drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab. 2011;13(3):340–350.
  • Ribou A-C. Synthetic sensors for reactive oxygen species detection and quantification: a critical review of current methods. Antioxid Redox Signal. 2016;25(9):520–533.
  • Vaughan WM, Weber G. Oxygen quenching of pyrenebutyric acid fluorescence in water. A dynamic probe of the microenvironment. Biochemistry. 1970;9(3):464–473.,
  • Fischkoff S, Vanderkooi JM. Oxygen diffusion in biological and artificial membranes determined by the fluorochrome pyrene. J Gen Physiol. 1975;65(5):663–676.
  • Oter O, Ribou A-C. Quenching of long lifetime emitting fluorophores with paramagnetic molecules. J Fluoresc. 2009;19(3):389–397.
  • Yuan Y, Peng H, Ping J, et al. A pyrene@micelle sensor for fluorescent oxygen sensing. 2015. Biomed Res. Int. 2015;2015:1–6.
  • Denicola A, Batthyány C, Lissi E, et al. Diffusion of nitric oxide into low density lipoprotein. J Biol Chem. 2002;277(2):932–936.
  • Rharass T, Gbankoto A, Canal C, et al. Oxidative stress does not play a primary role in the toxicity induced with clinical doses of doxorubicin in myocardial H9c2 cells. Mol Cell Biochem. 2016;413(1-2):199–215.
  • Ribou A-C, Vigo J, Salmon J-M. Lifetime of fluorescent pyrene butyric acid probe in single living cells for measurement of oxygen fluctuation. Photochem Photobiol. 2004;80(2):274–280.
  • Reinhardt K, Ribou A-C.. Females become infertile as the stored sperm's oxygen radicals increase. Sci Rep. 2013;3:2888.
  • Bijoux A, Ribou A-C. Time-resolved microfluorimetry: an alternative method for free radical and metabolic rate detection in microalgae. Biotechnol. J. 2014;9(2):294–300.
  • Dickinson BC, Chang CJ. A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc. 2008;130(30):9638–9639.
  • Dickinson BC, Srikun D, Chang CJ. Mitochondrial-targeted fluorescent probes for reactive oxygen species. Curr Opin Chem Biol. 2010;14(1):50–56.
  • Jean SR, Ahmed M, Lei EK, et al. Peptide-Mediated delivery of chemical probes and therapeutics to mitochondria. Acc Chem Res. 2016;49(9):1893–1902.
  • Forster S, Thumser AE, Hood SR, et al. Characterization of rhodamine-123 as a tracer dye for use in in vitro drug transport assays. PLoS One. 2012;7(3):e33253.
  • Murphy MP. Targeting lipophilic cations to mitochondria. Biochim Biophys Acta. 2008;1777(7-8):1028–1031.
  • Zielonka J, Joseph J, Sikora A, et al. Mitochondria-Targeted Triphenylphosphonium-Based compounds: Syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem Rev. 2017;117(15):10043–10120.
  • De Biasi S, Gibellini L, Bianchini E, et al. Quantification of mitochondrial reactive oxygen species in living cells by using multi-laser polychromatic flow cytometry. Cytometry A. 2016;89(12):1106–1110.
  • Ribou A-C, Vigo J, Salmon J-M. Synthesis and characterization of (1″-pyrene butyl)-2-rhodamine ester: a new probe for oxygen measurement in the mitochondria of living cells. J Photochem Photobiol. A. 2002;151(1-3):49–55.
  • Wawi MJ, Bijoux A, Inguimbert N, et al. Peptide vectors carry pyrene to cell organelles allowing Real-Time quantification of free radicals in mitochondria by Time-Resolved fluorescence microscopy. Chembiochem. 2021;22(9):1676–1685.
  • Crawford AG, Liu Z, Mkhalid IAI, et al. Synthesis of 2- and 2,7-functionalized pyrene derivatives: an application of selective C-H borylation. Chem Eur J. 2012;18(16):5022–5035.
  • Lehmann T, Völkl A, Fahimi HD. The importance of tissue fixation for light microscopic immunohistochemical localization of peroxisomal proteins: the superiority of carnoy's fixative over baker's formalin and bouin's solution. Histochem Cell Biol. 1995;103(3):187–195.
  • Nelder JA, Mead R. A simplex method for function minimization. Comput. J. 1965;7(4):308–313.
  • Bogani L, Danieli C, Biavardi E, et al. Single-molecule-magnet carbon-nanotube hybrids. Angew Chem Int Ed Engl. 2009;48(4):746–750.
  • Rharass T, Vigo J, Salmon J-M, et al. Variation of 1-pyrenebutyric acid fluorescence lifetime in single living cells treated with molecules increasing or decreasing reactive oxygen species levels. Anal Biochem. 2006;357(1):1–8.
  • Gilleron M, Marechal X, Montaigne D, et al. NADPH oxidases participate to doxorubicin-induced cardiac myocyte apoptosis. Biochem Biophys Res Commun. 2009;388(4):727–731.
  • Pias SC. Oxygen transport to tissue XLI, physiology & behavior, advances in experimental medicine and biology. Cham: Springer International Publishing; 2020.
  • Ribou A-C, Rharass T, Vigo J. No title. In: Kozyrev D, Slutsky V, editors. Handbook of free radicals: Formation, types and effects. New York: Nova Science Publishers, Inc. Hauppauge; 2010. p. 505–521.
  • Hahma A, Bhat S, Leivo K, et al. Pyrene derived functionalized low molecular weight organic gelators and gels. New J. Chem. 2008;32(8):1438.
  • Crawford AG, Dwyer AD, Liu Z, et al. Experimental and theoretical studies of the photophysical properties of 2- and 2,7-functionalized pyrene derivatives. J Am Chem Soc. 2011;133(34):13349–13362.
  • Mourtada R, Fonseca SB, Wisnovsky SP, et al. Re-directing an alkylating agent to mitochondria alters drug target and cell death mechanism. PLoS One. 2013;8(4):e60253.
  • Boukalova S, Stursa J, Werner L, et al. Mitochondrial targeting of metformin enhances its activity against pancreatic cancer. Mol Cancer Ther. 2016;15(12):2875–2886.
  • Li Y, Trush MA. Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem Biophys Res Commun. 1998;253(2):295–299.
  • Block K, Gorin Y. Aiding and abetting roles of NOX oxidases in cellular transformation. Nat Rev Cancer. 2012;12(9):627–637.
  • Nauseef WM. Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases. Biochim Biophys Acta. 2014;1840(2):757–767.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.