303
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Mitochondrial targeted ROS scavenger based on nitroxide for treatment and MRI imaging of acute kidney injury

, , , , , & show all
Pages 303-315 | Received 22 Apr 2022, Accepted 20 Jun 2022, Published online: 04 Jul 2022

References

  • Honore PM, Jacobs R, Boer W, et al. Sepsis and AKI: more complex than just a simple question of chicken and egg. Intensive Care Med. 2011;37(2):186–189.
  • Coggins SA, Laskin B, Harris MC, et al. Acute kidney injury associated with Late-Onset neonatal sepsis: a matched cohort study. J Pediatr. 2021;231:185–192 e184.
  • Zhu DC, Li WY, Zhang JW, et al. Rhabdomyolysis-associated acute kidney injury: clinical characteristics and intensive care unit transfer analysis. Intern Med J. 2021.
  • Akakpo JY, Ramachandran A, Orhan H, et al. 4-methylpyrazole protects against acetaminophen-induced acute kidney injury. Toxicol Appl Pharmacol. 2020;409:115317.
  • Allison SJ. Acute kidney injury: macrophage extracellular traps in rhabdomyolysis-induced AKI. Nat Rev Nephrol. 2018;14(3):141.
  • Chen Y, Lin L, Tao X, et al. The role of podocyte damage in the etiology of ischemia-reperfusion acute kidney injury and post-injury fibrosis. BMC Nephrol. 2019;20(1):106.
  • Han SJ, Lee HT. Mechanisms and therapeutic targets of ischemic acute kidney injury. Kidney Res Clin Pract. 2019;38(4):427–440.
  • Feng Y, Ma L, Liu L, et al. Rhabdomyolysis induced AKI via the regulation of endoplasmic reticulum stress and oxidative stress in PTECs. RSC Adv. 2016;6(111):109639–109648.
  • Wang J, Zhang W, Lu G. Thioredoxin relieves lipopolysaccharide-induced acute kidney injury in mice by reducing inflammation, oxidative stress and apoptosis. Exp Ther Med. 2021;21(6):629.
  • Xu D, Shen L, Zhou L, et al. Upregulation of FABP7 inhibits acute kidney injury-induced TCMK-1 cell apoptosis via activating the PPAR gamma signalling pathway. Mol Omics. 2020;16(6):533–542.
  • Hu J, Qiao J, Yu Q, et al. Role of SIK1 in the transition of acute kidney injury into chronic kidney disease. J Transl Med. 2021;19(1):69.
  • Wang F, Ding J. Pediatric acute kidney injury to the subsequent CKD transition. Kidney Dis (Basel). 2021;7(1):10–13.
  • Macedo E, Mehta RL. Targeting recovery from acute kidney injury: incidence and prevalence of recovery. Nephron Clin Pract. 2014;127(1-4):4–9.
  • Zhao M, Wang Y, Li L, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics. 2021;11(4):1845–1863.
  • Winterberg PD, Wang Y, Lin KM, et al. Reactive oxygen species and IRF1 stimulate IFN alpha production by proximal tubules during ischemic AKI. Am J Physiol Renal Physiol. 2013;305(2):F164–172.
  • Mercantepe F, Mercantepe T, Topcu A, et al. Protective effects of amifostine, curcumin, and melatonin against cisplatin-induced acute kidney injury. Naunyn Schmiedebergs Arch Pharmacol. 2018;391(9):915–931.
  • Sadat U. N-acetylcysteine in contrast-induced acute kidney injury: clinical use against principles of evidence-based clinical medicine!. Expert Rev Cardiovasc Ther. 2014;12(1):1–3.
  • Peerapanyasut W, Kobroob A, Palee S, et al. N-Acetylcysteine attenuates the increasing severity of distant organ liver dysfunction after acute kidney injury in rats exposed to bisphenol A. Antioxidants (Basel) 2019;8(10):497.
  • Gong L, Ding W, Chen Y, et al. Inhibition of mitochondrial ATP synthesis and regulation of oxidative stress based on {SbW8O30} determined by single‐cell proteomics analysis. Angew Chem. 2021;133(15):8425–8432.
  • Sun T, Jiang D, Rosenkrans ZT, et al. A Melanin-Based natural antioxidant defense nanosystem for theranostic application in acute kidney injury. Adv Funct Mater. 2019;29(48):https://doi.org/10.1002/adfm.201904833.
  • Huang ZW, Shi Y, Zhai YY, et al. Hyaluronic acid coated bilirubin nanoparticles attenuate ischemia reperfusion-induced acute kidney injury. J Control Release. 2021;334:275–289.
  • Zhang DY, Liu H, Li C, et al. Ceria nanozymes with preferential renal uptake for acute kidney injury alleviation. ACS Appl Mater Interfaces. 2020;12(51):56830–56838.
  • Zhang DY, Younis MR, Liu H, et al. Multi-enzyme mimetic ultrasmall iridium nanozymes as reactive oxygen/nitrogen species scavengers for acute kidney injury management. Biomaterials. 2021;271:120706.
  • Zhang D-Y, Liu H, Younis MR, et al. Ultrasmall platinum nanozymes as broad-spectrum antioxidants for theranostic application in acute kidney injury. Chem Eng J. 2021;409:127371.
  • Liu Z, Xie L, Qiu K, et al. An ultrasmall RuO2 nanozyme exhibiting multienzyme-like activity for the prevention of acute kidney injury. ACS Appl Mater Interfaces. 2020;12(28):31205–31216.
  • Gao J, Liu Y, Jiang B, et al. Phenylenediamine-Based carbon nanodots alleviate acute kidney injury via preferential renal accumulation and antioxidant capacity. ACS Appl Mater Interfaces. 2020;12(28):31745–31756.
  • Zhang DY, Liu H, He T, et al. Biodegradable Self-Assembled ultrasmall nanodots as reactive oxygen/nitrogen species scavengers for theranostic application in acute kidney injury. Small. 2021;17(8):e2005113.
  • Hou J, Wang H, Ge Z, et al. Treating acute kidney injury with antioxidative black phosphorus nanosheets. Nano Lett. 2020;20(2):1447–1454.
  • Zuo J, Wang SM, Jiang X, et al. Design, synthesis and biological evaluation of novel arylpropionic esters for the treatment of acute kidney injury. Bioorg Chem. 2020;105:104455.
  • Zheng Q, Zhang Y, Zhao Z, et al. Isorhynchophylline ameliorates paraquat-induced acute kidney injury by attenuating oxidative stress and mitochondrial damage via regulating toll-interacting expression. Toxicol Appl Pharmacol. 2021;420:115521.
  • Wang H, Yu D, Fang J, et al. Phenol-like group functionalized graphene quantum dots structurally mimicking natural antioxidants for highly efficient acute kidney injury treatment. Chem Sci. 2020;11(47):12721–12730.
  • Rosenkrans ZT, Sun T, Jiang D, et al. Selenium-Doped carbon quantum dots act as Broad-Spectrum antioxidants for acute kidney injury management. Adv Sci (Weinh). 2020;7(12):2000420.
  • Duann P, Lin PH. Mitochondria damage and kidney disease. Adv Exp Med Biol. 2017;982:529–551.
  • Yang SK, Han YC, He JR, et al. Mitochondria targeted peptide SS-31 prevent on cisplatin-induced acute kidney injury via regulating mitochondrial ROS-NLRP3 pathway. Biomed Pharmacother. 2020;130:110521.
  • Lindhardt JL, Nielsen PM, Hansen ESS, et al. The hemodynamic and metabolic effects of spironolactone treatment in acute kidney injury assessed by hyperpolarized MRI. NMR Biomed. 2020;33(10):e4371.
  • Zimmer F, Klotz S, Hoeger S, et al. Quantitative arterial spin labelling perfusion measurements in rat models of renal transplantation and acute kidney injury at 3T. Z Med Phys. 2017;27(1):39–48.
  • Wang C, Zhang B, Wang H, et al. A feasibility study of using noninvasive renal oxygenation imaging for the early assessment of ischemic acute kidney injury in an embolization model. Magn Reson Imaging. 2019;63:178–184.
  • Kong H, Wang C, Gao F, et al. Early assessment of acute kidney injury using targeted field of view diffusion-weighted imaging: an in vivo study. Magn Reson Imaging. 2019;57:1–7.
  • Rubio-Navarro A, Carril M, Padro D, et al. CD163-Macrophages are involved in Rhabdomyolysis-Induced kidney injury and may be detected by MRI with targeted Gold-Coated iron oxide nanoparticles. Theranostics. 2016;6(6):896–914.
  • Ittrich H, Lange C, Togel F, et al. In vivo magnetic resonance imaging of iron oxide-labeled, arterially-injected mesenchymal stem cells in kidneys of rats with acute ischemic kidney injury: Detection and monitoring at 3T. J Magn Reson Imaging. 2007;25(6):1179–1191.
  • Zhang RP, Li J, Xin L, et al. In vivo magnetic resonance imaging of iron oxide-labeled, intravenous-injected mesenchymal stem cells in kidneys of rabbits with acute ischemic kidney injury: detection and monitoring at 1.5 T. Ren Fail. 2015;37(8):1363–1369.
  • Privratsky JR, Wang N, Qi Y, et al. Dynamic contrast-enhanced MRI promotes early detection of toxin-induced acute kidney injury. Am J Physiol Renal Physiol. 2019;316(2):F351–F359.
  • Charlton JR, Xu YZ, Wu T, et al. Magnetic resonance imaging accurately tracks kidney pathology and heterogeneity in the transition from acute kidney injury to chronic kidney disease. Kidney Int. 2021;99(1):173–185.
  • Zimmer F, Zollner FG, Hoeger S, et al. Quantitative renal perfusion measurements in a rat model of acute kidney injury at 3T: testing inter- and intramethodical significance of ASL and DCE-MRI. PLoS One. 2013;8(1):e53849.
  • Zollner FG, Zimmer F, Klotz S, et al. Renal perfusion in acute kidney injury with DCE-MRI: deconvolution analysis versus two-compartment filtration model. Magn Reson Imaging. 2014;32(6):781–785.
  • Yang SG, Park HJ, Kim JW, et al. Mito-TEMPO improves development competence by reducing superoxide in preimplantation porcine embryos. Sci Rep. 2018;8(1):10130.
  • Ni R, Cao T, Xiong SD, et al. Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy. Free Radic Biol Med. 2016;90:12–23.
  • Hahn SM, DeLuca AM, Coffin D, et al. In vivo radioprotection and effects on blood pressure of the stable free radical nitroxides. Int J Radiat Oncol Biol Phys. 1998;42(4):839–842.
  • Togashi H, Shinzawa H, Ogata T, et al. Spatiotemporal measurement of free radical elimination in the abdomen using an in vivo ESR-CT imaging system. Free Radic Biol Med. 1998;25(1):1–8.
  • Anzai K, Saito K, Takeshita K, et al. Assessment of ESR-CT imaging by comparison with autoradiography for the distribution of a blood-brain-barrier permeable spin probe, MC-PROXYL, to rodent brain. Magn Reson Imaging. 2003;21(7):765–772.
  • Benial AMF, Dhas MK, Jawahar A. Rotational correlation time studies on nitroxyl radicals using 300 MHz ESR spectrometer in high viscous liquid. Appl Magn Reson. 2011;40(3):311–319.
  • Poprac P, Poliak P, Kavala M, et al. Polyradical PROXYL/TEMPO-Derived amides: Synthesis, physicochemical studies, DFT calculations, and antimicrobial activity. Chempluschem. 2017;82(11):1326–1340.
  • Kuroda Y, Uchida T, Togashi H, et al. In vivo evaluation of ischemia-reperfusion injury of skeletal muscle, using 3-carbamoyl-PROXYL-enhanced MRI. J Vasc Surg. 2017;65(6):196s–197s.
  • Berkman N, Assayag M, Goldstein S, et al. Protective effect of 3-carbamoyl proxyl against bleomycin-induced lung fibrosis. Am J Respi Crit Care Med. 2019;199:A2581–A2581.
  • Assayag M, Goldstein S, Samuni A, et al. 3-Carbamoyl-proxyl nitroxide radicals attenuate bleomycin-induced pulmonary fibrosis in mice. Free Radic Biol Med. 2021;171:135–142.
  • Guo SW, Wang XM, Li ZQ, et al. A nitroxides-based macromolecular MRI contrast agent with an extraordinary longitudinal relaxivity for tumor imaging via clinical T1WI SE sequence. J Nanobiotechnol. 2021;19(1):244.
  • Kubota H, Komarov DA, Yasui HB, et al. Feasibility of in vivo three-dimensional T-2(*) mapping using dicarboxy-PROXYL and CW-EPR-based single-point imaging. MAGMA. 2017;30(3):291–298.
  • Takeshita K, Saito K, Ueda J-I, et al. Kinetic study on ESR signal decay of nitroxyl radicals, potent redox probes for in vivo ESR spectroscopy, caused by reactive oxygen species. Biochim Biophys Acta. 2002;1573(2):156–164.
  • Matsumoto K-I, Krishna MC, Mitchell JB. Novel pharmacokinetic measurement using electron paramagnetic resonance spectroscopy and simulation of in vivo decay of various nitroxyl spin probes in mouse blood. J Pharmacol Exp Ther. 2004;310(3):1076–1083.
  • Leung N, Croatt AJ, Haggard JJ, et al. Acute cholestatic liver disease protects against glycerol-induced acute renal failure in the rat. Kidney Int. 2001;60(3):1047–1057.
  • Rodrigo R, Trujillo S, Bosco C. Biochemical and ultrastructural lung damage induced by rhabdomyolysis in the rat. Exp Biol Med (Maywood). 2006;231(8):1430–1438.
  • Mahdy MA, Warita K, Hosaka YZ. Glycerol induces early fibrosis in regenerating rat skeletal muscle. J Vet Med Sci. 2018;80(11):1646–1649.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.