155
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Graphene oxide nanoflakes prevent reperfusion injury of Langendorff isolated rat heart providing antioxidative activity in situ

ORCID Icon, , , , , , , & show all
Pages 328-341 | Received 19 May 2022, Accepted 27 Jun 2022, Published online: 11 Jul 2022

References

  • WHO. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
  • Dubois-Deruy E, Peugnet V, Turkieh A, et al. Oxidative stress in cardiovascular diseases. Antioxidants. 2020;9(9):864.
  • Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4(2):89–96.
  • Lawson M, Jomova K, Poprac P, et al. Nutritional antioxidant therapies: treatments and perspectives. Springer Nature eBook; 2017.
  • Maddu N. Diseases related to types of free radicals (Antioxidants). London: IntechOpen; 2019.
  • Marczin N, El-Habashi N, Hoare GS, et al. Antioxidants in myocardial ischemia-reperfusion injury: therapeutic potential and basic mechanisms. Arch Biochem Biophys. 2003;420(2):222–236.
  • Venardos KM, Kaye D. M. Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: a review. CMC. 2007;14(14):1539–1549.
  • Qin C, Yap S, Woodman OL. Antioxidants in the prevention of myocardial ischemia/reperfusion injury. Expert Rev Clin Pharmacol. 2009;2(6):673–695.
  • Chen J, Chow C. Antioxidants and myocardial ischemia: reperfusion injuries. Chang Gung Med J. 2005;28(6):369–377.
  • Cuzzocrea S, Riley DP, Caputi AP, et al. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev. 2001;53(1):135–159.
  • Jones SP, Hoffmeyer MR, Sharp BR, et al. Role of intracellular antioxidant enzymes after in vivo myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 2003;284(1):H277–H282.
  • Chen ZY, Oberley TD, Ho YS, et al. Overexpression of CuZnSOD in coronary vascular cells attenuates myocardial ischemia/reperfusion injury. Free Rad Biol Med. 2000;29(7):589–596.
  • Amani H, Habibey R, Hajmiresmail SJ, et al. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J Mater Chem B. 2017;2015(48):9452–9476.
  • Mao HY, Laurent S, Chen W, et al. Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem Rev. 2013;113(5):3407–3424.
  • Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–583.
  • Lin YH, Ren JS, Qu XG. Nano-Gold as artificial enzymes: hidden talents. Adv Mater. 2014;26(25):4200–4217.
  • Wang GL, Xu XF, Qiu L, et al. Dual responsive enzyme mimicking activity of AgX (X = Cl, Br, I) nanoparticles and its application for cancer cell detection. ACS Appl Mater Interfaces. 2014;6(9):6434–6442.
  • Hu AL, Liu YH, Deng HH, et al. Fluorescent hydrogen peroxide sensor based on cupric oxide nanoparticles and its application for glucose and L-lactate detection. Biosens Bioelectron. 2014;61:374–338.
  • Niu J, Azfer A, Rogers LM, et al. Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc Res. 2007;73(3):549–559.
  • Huang G, Lin Y, Zhang L, et al. Synthesis of sulfur-selenium doped carbon quantum dots for biological imaging and scavenging reactive oxygen species. Sci Rep. 2019;9(1):19651.
  • Nia ZK, Chen JY, Tang B, et al. Optimizing the free radical content of graphene oxide by controlling its reduction. Carbon. 2017;116:703–712.
  • Qiu Y, Wang ZY, Owens ACE, et al. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale. 2014;6(20):11744–11755.
  • Hsieh HS, Zepp RG. Reactivity of graphene oxide with reactive oxygen species (hydroxyl radical, singlet oxygen, and superoxide anion). Environ Sci Nano. 2019;6(12):3734–3744.
  • Baali N, Khecha A, Bensouici A, et al. Assessment of antioxidant activity of pure graphene oxide (GO) and ZnO-decorated reduced graphene oxide (rGO) using DPPH radical and H2O2 scavenging assays. C. 2019;5(4):75.
  • Eigler S, Hirsch A. Chemistry with graphene and graphene oxide-challenges for synthetic chemists. Angew Chem Int Ed Engl. 2014;53(30):7720–7738.
  • Akhavan O. Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system. J Mater Chem B. 2016;4(19):3169–3190.
  • Rahimnejad M, Boroujeni NN, Jahangiri S, et al. Prevascularized micro-/nano-sized spheroid/bead aggregates for vascular tissue engineering. Nanomicro Lett. 2021;13(1):182.
  • Lakshmanan R, Maulik N. Graphene-based drug delivery systems in tissue engineering and nanomedicine. Can J Physiol Pharmacol. 2018;96(9):869–878.
  • Paul A, Hasan A, Kindi HA, et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano. 2014;8(8):8050–8062.
  • Amrollahi-Sharifabadi M, Koohi MK, Zayerzadeh E, et al. In vivo toxicological evaluation of graphene oxide nanoplatelets for clinical application. Int J Nanomed. 2018;13:4757–4769.
  • Qu G, Wang X, Liu Q, et al. The ex vivo and in vivo biological performances of graphene oxide and the impact of surfactant on graphene oxide’s biocompatibility. J Environ Sci. 2013;25(5):873–881.
  • Sasidharan A, Swaroop S, Koduri CK, et al. Comparative in vivo toxicity, organ biodistribution and immune response of pristine, carboxylated and PEGylated few-layer graphene sheets in Swiss albino mice: a three month study. Carbon. 2015;95:511–524.
  • Arbo MD, Altknecht LF, Cattani S, et al. In vitro cardiotoxicity evaluation of graphene oxide. Mutat Res Genet Toxicol Environ Mutagen. 2019;841:8–13.
  • Park J, Kim B, Han J, et al. Graphene oxide flakes as a cellular adhesive: prevention of reactive oxygen species mediated death of implanted cells for cardiac repair. ACS Nano. 2015;9(5):4987–4999.
  • Contreras-Torres FF, Rodriguez-Galvan A, Guerrero-Beltran CE, et al. Differential cytotoxicity and internalization of graphene family nanomaterials in myocardial cells. Mater Sci Eng C Mater Biol Appl. 2017;73:633–642.
  • Kurapati R, Martin C, Palermo V, et al. Biodegradation of graphene materials catalyzed by human eosinophil peroxidase. Faraday Discuss. 2021;227(0):189–203.
  • Martin C, Ruiz A, Keshavan S, et al. Biodegradable multifunctional graphene oxide platform for targeted cancer therapy. Adv. Funct. Mater. 2019;29(39):1901761.
  • Newman L, Jasim DA, Prestat E, et al. Splenic capture and in vivo intracellular biodegradation of biological-grade graphene oxide sheets. Acs Nano. 2020;14(8):10168–10186.
  • Shirley D. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B. 1972;5(12):4709–4714.
  • Scofield JH. Hartree-slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenom. 1976;8(2):129–137.
  • Boehm HP. Surface oxides on carbon and their analysis: a critical assessment. Carbon. 2002;40(2):145–149.
  • Voitko KV, Haliarnyk DM, Bakalinska OM, et al. Catalytic decomposition of organic peroxides in non-aqueous media under metal-free nanoporous and nanosized carbocatalysts. Catal Lett. 2017;147(8):1966–1976.
  • Karadag A, Ozcelik B, Saner S. Review of methods to determine antioxidant capacities. Food Anal. Methods. 2009;2(1):41–60.
  • Weydert CJ, Cullen JJ. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc. 2010;5(1):51–66.
  • Neely J, Liebermeister H, Battersby E, et al. Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol. 1967;212(4):804–814.
  • Huwiler M, Kohler H. Pseudo-catalytic degradation of hydrogen peroxide in the lactoperoxidase/H2O2/iodide system. Eur J Biochem. 1984;141(1):69–74.
  • Kuthan H, Ullrich V, Estabrook RW. A quantitative test for superoxide radicals produced in biological systems. Biochem J. 1982;203(3):551–558.
  • Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978;86(1):271–278.
  • Gavrilov VB, Gavrilova AR, Khmara NF. Measurement of diene conjugates in blood plasma using the UV absorption of heptane and isopropanol extracts. Lab Delo. 1988;2:60–64.
  • Becke AD. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98(7):5648–5652.
  • Lee CT, Yang WT, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37(2):785–789.
  • Grimme S. Density functional theory with London dispersion corrections. WIREs Comput Mol Sci. 2011;1(2):211–228.
  • Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem. 2011;32(7):1456–1465.
  • Schmidt MW, Baldridge KK, Boatz JA, et al. General atomic and molecular eletronic-structure system. J Comput Chem. 1993;14(11):1347–1363.
  • Kudin KN, Ozbas B, Schniepp HC, et al. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008;8(1):36–41.
  • Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol. 2013;8(4):235–246.
  • Cancado LG, et al. General equation for the determination of the crystallite size L-a of nanographite by Raman spectroscopy. Appl Phys Lett. 2006; 88(16):163106–163106-3.
  • Pandey D, Reifenberger R, Piner R. Scanning probe microscopy study of exfoliated oxidized graphene sheets. Surf Sci. 2008;602(9):1607–1613.
  • Mkhoyan KA, Contryman AW, Silcox J, et al. Atomic and electronic structure of graphene-oxide. Nano Lett. 2009;9(3):1058–1063.
  • Ganguly A, Sharma S, Papakonstantinou P, et al. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J Phys Chem C. 2011;115(34):17009–17019.
  • Kim J, Han J, Yamada Y. Heptagons in the basal plane of graphene nanoflakes analyzed by simulated X-ray photoelectron spectroscopy. ACS Omega. 2021;6(3):2389–2395.
  • Rattana T, Chaiyakun S, Wititanun N, et al. Preparation and characterization of graphene oxide nanosheets. Iseec. 2012;32:759–764.
  • Voitko KV, Demianenko EM, Kuts VS, et al. Catalytic decomposition of organic/inorganic peroxides via 1-3D carbon matrices: empirical and quantum-chemical study. Reac Kinet Mech Cat. 2020;131(2):583–597.
  • Saenger W, Lindner K. OH clusters with homodromic circularvarrangment of hydrogen-bonds. Angew Chem Int Ed Engl. 1980;19(5):398–399.
  • Saenger W. Circular hydrogen-bonds. Nature. 1979;279(5711):343–344.
  • Xantheas SS. Cooperativity and hydrogen bonding network in water clusters. Chem Phys. 2000;258(2-3):225–231.
  • Akhavan O, Ghaderi E. Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small. 2013;9(21):3593–3621.
  • Yang K, Zhang S, Zhang G, et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010;10(9):3318–3323.
  • Fazaeli Y, Akhavan O, Rahighi R, et al. In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures. Mater Sci Eng C Mater Biol Appl. 2014;45:196–204.
  • Jannesari M, Akhavan O, Madaah Hosseini HR. Graphene oxide in generation of nanobubbles using controllable microvortices of jet flows. Carbon. 2018;138:8–17.
  • Akhavan O, Ghaderi E, Akhavan A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials. 2012;33(32):8017–8025.
  • Akhavan O, Ghaderi E, Hashemi E, et al. Dose-dependent effects of nanoscale graphene oxide on reproduction capability of mammals. Carbon. 2015;95:309–317.
  • Zhang J, Cao H, Wang J, et al. Graphene oxide and reduced graphene oxide exhibit cardiotoxicity through the regulation of lipid peroxidation, oxidative stress, and mitochondrial dysfunction. Front Cell Devel Biol. 2021;9:616888.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.