385
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

CD36 down regulation by the macrophage antioxidant 7,8-dihydroneopterin through modulation of PPAR-γ activity

, , &
Pages 366-377 | Received 01 May 2022, Accepted 16 Aug 2022, Published online: 28 Aug 2022

References

  • Van Reyk DM, Jessup W. The macrophage in atherosclerosis: modulation of cell function by sterols. J Leukoc Biol. 1999;66(4):557–561.
  • Gieseg SP, Maghzal G, Glubb D. Inhibition of haemolysis by the macrophage synthesized antioxidant, 7,8-dihydroneopterin. Redox Report. 2000;5(2-3):98–100.
  • Endemann G, Stanton LW, Madden KS, et al. CD36 is a receptor for oxidized low-density-lipoprotein. J Biol Chem. 1993;268(16):11811–11816.
  • Nicholson AS, Frieda S, Pearce FA, et al. Oxidised LDL binds to CD36 on human monocyte derived macrophages and transfected cell lines: evidence implicating the lipid moiety of lipoprotein as the binding site. Arterioscler Thromb Vasc Biol. 1995;15(2):269–275.
  • Sheedy FJ, Grebe A, Rayner KJ, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol. 2013;14(8):812–820. +
  • Nakagawa T, Nozaki S, Nishida M, et al. Oxidized LDL increases and interferon-gamma decreases expression of CD36 in human monocyte-derived macrophages. Arterioscler Thromb Vasc Biol. 1998;18(8):1350–1357.
  • Gieseg SP, Amit Z, Yang YT, et al. Oxidant production, oxLDL uptake, and CD36 levels in human monocyte derived macrophages are down regulated by the macrophage generated antioxidant 7,8-dihydroneopterin. Antioxid Redox Signal. 2010;13(10):1525–1534.
  • Shchepetkina AA, Hock BD, Miller A, et al. Effect of 7,8-dihydroneopterin mediated CD36 down regulation and oxidant scavenging on oxidised low-density lipoprotein induced cell death in human macrophages. Int J Biochem Cell Biol. 2017;87:27–33.
  • Ghodsian N, Yeandle A, Gieseg SP. Foam cell formation but not oxLDL cytotoxicity is inhibited by CD36 down regulation by the macrophage antioxidant 7,8-dihydroneopterin. Int J Biochem Cell Biol. 2021;133:105918.
  • Ricciarelli R, Zingg JM, Azzi A. Vitamin E reduces the uptake of oxidized LDL by inhibiting CD36 scavenger receptor expression in cultured aortic smooth muscle cells. Circulation. 2000;102(1):82–87.
  • Yin M, Liu Q, Yu L, et al. Downregulations of CD36 and calpain-1, inflammation, and atherosclerosis by simvastatin in apolipoprotein e knockout mice. J Vasc Res. 2017;54(3):123–130.
  • Pietsch A, Erl W, Lorenz RL. Lovastatin reduces expression of the combined adhesion and scavenger receptor CD36 in human monocytic cells. Biochem Pharmacol. 1996;52(3):433–439.
  • Fuchs D, Hausen A, Reibnegger G, et al. Neopterin as a marker for activated cell-mediated immunity:application in HIV infection. Immunol Today. 1988;9(5):150–155.
  • Gieseg SP, Leake DS, Flavall EM, et al. Macrophage antioxidant protection within atherosclerotic plaques. Front Biosci (Landmark Ed). 2009;14(4):1230–1246.
  • Janmale TV, Lindsay A, Gieseg SP. Nucleoside transporters are critical to the uptake and antioxidant activity of 7,8-dihydroneopterin in monocytic cells. Free Radic Res. 2020;54(5):341–350.
  • Gieseg SP, Baxter-Parker G, Lindsay A. Neopterin, inflammation, and oxidative stress: what could we be missing? Antioxidants. 2018;7(7):80.
  • Gieseg SP, Whybrow J, Glubb D, et al. Protection of U937 cells from free radical damage by the macrophage synthesized antioxidant 7,8 dihydroneopterin. Free Radic Res. 2001;35(3):311–318.
  • Baird SK, Reid L, Hampton M, et al. OxLDL induced cell death is inhibited by the macrophage synthesised pterin, 7,8-dihydroneopterin, in U937 cells but not THP-1 cells. Biochim Biophys Acta. 2005;1745(3):361–369.
  • Widner B, Mayr C, Wirleitner B, et al. Oxidation of 7,8-Dihydroneopterin by hypochlorous acid yields neopterin. Biochem Biophys Res Commun. 2000;275(2):307–311.
  • Baxter-Parker G, Prebble H, Cross S, et al. Neopterin formation through radical scavenging of superoxide by the macrophage synthesised antioxidant 7,8-dihydroneopterin. Free Radic Biol Med. 2020;152:142–151.
  • Lindsay A, Gieseg SP. Pterins as diagnostic markers of exercise-induced stress: a systematic review. J Sci Med Sport. 2020;23(1):53–62.
  • Sugioka K, Naruko T, Hozumi T, et al. Elevated levels of neopterin are associated with carotid plaques with complex morphology in patients with stable angina pectoris. Atherosclerosis. 2010;208(2):524–530.
  • Janmale T, Genet R, Crone E, et al. Neopterin and 7,8-dihydroneopterin are generated within atherosclerotic plaques. Pteridines. 2015;26(3):93–103.
  • Prebble H, Cross S, Marks E, et al. Induced macrophage activation in live excised atherosclerotic plaque. Immunobiology. 2018;223(8-9):526–535.
  • Chawla A, Barak Y, Nagy L, et al. PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med. 2001;7(1):48–52.
  • Tontonoz P, Nagy L, Alvarez JG, et al. PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell. 1998;93(2):241–252.
  • Nagy L, Tontonoz P, Alvarez JG, et al. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell. 1998;93(2):229–240.
  • Moore KJ, Rosen ED, Fitzgerald ML, et al. The role of PPAR-γ in macrophage differentiation and cholesterol uptake. Nat Med. 2001;7(1):41–47.
  • Kwok CF, Juan CC, Ho LT. Endothelin-1 decreases CD36 protein expression in vascular smooth muscle cells. Am J Physiol Endocrinol Metab. 2007;292(2):E648–652.
  • Han S, Sidell N. Peroxisome-proliferator-activated-receptor gamma (PPAR gamma) independent induction of CD36 in THP-1 monocytes by retinoic acid. Immunology. 2002;106(1):53–59.
  • Huang JT, Welch JS, Ricote M, et al. Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature. 1999;400(6742):378–382.
  • Higashi Y, Peng T, Du J, et al. A redox-sensitive pathway mediates oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor. J Lipid Res. 2005;46(6):1266–1277.
  • Brash AR. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem. 1999;274(34):23679–23682.
  • Fair A, Pritchard KA. Jr. Oxidized low density lipoprotein increases U937 cell 5-Lipoxygenase activity: Induction of 5-Lipoxygenase activating protein. Biochem Biophys Res Commun. 1994;201(2):1014–1020.
  • Draper HH, Squires EJ, Mahmoodi H, et al. A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radic Biol Med. 1993;15(4):353–363.
  • Camp HS, Tafuri SR. Regulation of peroxisome proliferator-activated receptor gamma activity by mitogen-activated protein kinase. J Biol Chem. 1997;272(16):10811–10816.
  • Han JH, Hajjar DP, Tauras JM, et al. Transforming growth factor-beta 1 (TGF-beta 1) and TGF-beta 2 decrease expression of CD36, the type B scavenger receptor, through mitogen-activated protein kinase phosphorylation of peroxisome proliferator-activated receptor-gamma. J Biol Chem. 2000;275(2):1241–1246.
  • Scirpo R, Fiorotto R, Villani A, et al. Stimulation of nuclear receptor peroxisome proliferator-activated receptor-γ limits NF-κB-dependent inflammation in mouse cystic fibrosis biliary epithelium. Hepatology. 2015;62(5):1551–1562.
  • Limor R, Sharon O, Knoll E, et al. Lipoxygenase-derived metabolites are regulators of peroxisome proliferator-activated receptor gamma-2 expression in human vascular smooth muscle cells. Am J Hypertens. 2008;21(2):219–223.
  • Kotla S, Singh NK, Rao GN. ROS via BTK-p300-STAT1-PPARγ signaling activation mediates cholesterol crystals-induced CD36 expression and foam cell formation. Redox Biol. 2017;11:350–364.
  • Gieseg SP, Reibnegger G, Wachter H, et al. 7,8-Dihydroneopterin inhibits low density lipoprotein oxidation in vitro. Evidence that this macrophage secreted pteridine is an antioxidant. Free Radic Res. 1995;23(2): 123–136.
  • Gieseg SP, Cato S. Inhibition of THP-1 cell-mediated low-density lipoprotein oxidation by the macrophage-synthesised pterin, 7,8-dihydroneopterin. Redox Rep. 2003;8(2):113–119.
  • Han J, Hajjar DP, Zhou X, et al. Regulation of peroxisome proliferator-activated receptor-gamma-mediated gene expression. A new mechanism of action for high density lipoprotein. J Biol Chem. 2002;277(26):23582–23586.
  • Yu M, Jiang M, Chen Y, et al. Inhibition of macrophage CD36 expression and cellular oxidized low density lipoprotein (oxLDL) accumulation by tamoxifen a peroxisome proliferator-activated receptor (PPAR)γ-dependent mechanism. J Biol Chem. 2016;291(33):16977–16989.
  • Engelman JA, Lisanti MP, Scherer PE. Specific inhibitors of p38 mitogen-activated protein kinase block 3T3-L1 adipogenesis. J Biol Chem. 1998;273(48):32111–32120.
  • Zhao M, Liu Y, Wang X, et al. Activation of the p38 MAP kinase pathway is required for foam cell formation from macrophages exposed to oxidized LDL. APMIS. 2002;110(6):458–468.
  • Puigserver P, Rhee J, Lin J, et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol Cell. 2001;8(5):971–982.
  • Prigge ST, Boyington JC, Faig M, et al. Structure and mechanism of lipoxygenases. Biochimie. 1997;79(11):629–636.
  • Pein H, Ville A, Pace S, et al. Endogenous metabolites of vitamin E limit inflammation by targeting 5-lipoxygenase. Nat Commun. 2018;9(1):3834.
  • Gieseg SP, Glubb D, Maghzal G. Protection of erythrocytes by the macrophage synthesized antioxidant 7,8 dihydroneopterin. Free Radic Res. 2001;34(2):123–136.
  • Gieseg SP, Pearson J, Firth CA. Protein hydroperoxides are a major product of low density lipoprotein oxidation during copper, peroxyl radical and macrophage-mediated oxidation. Free Radic Res. 2003;37(9):983–991.
  • Yang YT, Whiteman M, Gieseg SP. Intracellular glutathione protects human monocyte-derived macrophages from hypochlorite damage. Life Sci. 2012;90(17-18):682–688.
  • Huo Y, Zhao L, Hyman MC, et al. Critical role of macrophage 12/15-lipoxygenase for atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2004;110(14):2024–2031.
  • Bäck M. Leukotriene signaling in atherosclerosis and ischemia. Cardiovasc Drugs Ther. 2009;23(1):41–48.
  • Baxter-Parker G, Gaddam RR, Moltchanova E, et al. Oxidative stress and immune cell activation quantification in sepsis and non-sepsis critical care patients by neopterin/7,8-dihydroneopterin analysis. Pteridines. 2020;31(1):68–82.
  • Baydar T, Yuksel O, Sahin TT, et al. Neopterin as a prognostic biomarker in intensive care unit patients. J. Crit. Care. 2009;24(3):318–321.
  • Adachi T, Naruko T, Itoh A, et al. Neopterin is associated with plaque inflammation and destabilisation in human coronary atherosclerotic lesions. Heart. 2006;93(12):1537–1541.
  • Marks ECA, Wilkinson TM, Frampton CM, et al. Plasma levels of soluble VEGF receptor isoforms, circulating pterins and VEGF system SNPs as prognostic biomarkers in patients with acute coronary syndromes. BMC Cardiovasc Disord. 2018;18:169.
  • Signorelli SS, Anzaldi M, Fiore V, et al. Neopterin: a potential marker in chronic peripheral arterial disease. Mol Med Rep. 2013;7(6):1855–1858.
  • Ko YG, Le VC, Kim BH, et al. Correlations between coronary plaque tissue composition assessed by virtual histology and blood levels of biomarkers for coronary artery disease. Yonsei Med J. 2012;53(3):508–516.
  • Handberg A, Skjelland M, Michelsen AE, et al. Soluble CD36 in plasma is increased in patients with symptomatic atherosclerotic carotid plaques and is related to plaque instability. Stroke. 2008;39(11):3092–3095.
  • Isoviita PM, Nuotio K, Saksi J, et al. An imbalance between CD36 and ABCA1 protein expression favors lipid accumulation in stroke-prone ulcerated carotid plaques. Stroke. 2010;41(2):389–393.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.