550
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Recent advances in the antioxidant activity and mechanisms of chalcone derivatives: a computational review

, &
Pages 378-397 | Received 05 Jul 2022, Accepted 29 Aug 2022, Published online: 08 Sep 2022

References

  • Mittal A, Devi SP, Kakkar R. A DFT study of the conformational and electronic properties of echinatin, a retrochalcone, and its anion in the gas phase and aqueous solution. Struct Chem. 2020;31(6):2513–2524.
  • Mittal A, Kakkar R. A theoretical assessment of the structural and electronic features of some retrochalcones. Int J Quantum Chem. 2021;121(24):e26797.
  • Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47.
  • Zhou K, Yang S, Li SM. Naturally occurring prenylated chalcones from plants: structural diversity, distribution, activities and biosynthesis. Nat Prod Rep. 2021;38(12):2236–2260.
  • Michalkova R, Mirossay L, Gazdova M, et al. Molecular mechanisms of antiproliferative effects of natural chalcones. Cancers. 2021;13(11):2730.
  • Rudrapal M, Khan J, Dukhyil AAB, et al. Chalcone scaffolds, bioprecursors of flavonoids: chemistry, bioactivities, and pharmacokinetics. Molecules. 2021;26(23):7177.
  • Murti Y, Goswam A, Mishra P. Synthesis and antioxidant activity of some chalcones and flavanoids. Inter J Pharm Tech Res. 2013;5:811–818.
  • Murti Y, Pathak D, Pathak K. Green chemistry approaches to the synthesis of flavonoids. COC. 2021;25(17):2005–2027.
  • Gupta J, Gupta R, Varshney B. Green approaches of flavonoids in cancer: chemistry, applications, management, healthcare and future perspectives. JPRI. 2021;33(59A):130–143.
  • Rammohan A, Reddy JS, Sravya G, et al. Chalcone synthesis, properties and medicinal applications: a review. Environ Chem Lett. 2020;18(2):433–458.
  • Mittal A, Kakkar R. Synthetic methods and biological applications of retrochalcones isolated from the root of glycyrrhiza species: a review. Results Chem. 2021;3:100216.
  • Cao Y, Xu W, Huang Y, et al. Licochalcone B, a chalcone derivative from glycyrrhiza inflata, as a multifunctional agent for the treatment of Alzheimer’s disease. Nat Prod Res. 2020;34(5):736–739.
  • Shrivastava A, Gupta JK, Goyal MK. Flavonoids and antiepileptic drugs: a comprehensive review on their neuroprotective potentials. JMPAS. 2022;11(1):4179–4186.
  • Jasim HA, Nahar L, Jasim MA, et al. Chalcones: synthetic chemistry follows where nature leads. Biomolecules. 2021;11(8):1203.
  • Farhadi F, Khameneh B, Iranshahi M, et al. Antibacterial activity of flavonoids and their structure–activity relationship: an update review. Phytother Res. 2019;33(1):13–40.
  • Maria Pia GD, Sara F, Mario F, et al. Biological effects of licochalcones. Mini Rev Med Chem. 2019;19(8):647–656.
  • Zhang Z, Yang L, Hou J, et al. Molecular mechanisms underlying the anticancer activities of licorice flavonoids. J Ethnopharmacol. 2021;267:113635.
  • Elkhalifa D, Al-Hashimi I, Al-Moustafa AE, et al. A comprehensive review on the antiviral activities of chalcones. J Drug Target. 2021;29(4):403–419.
  • Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 2001;31(11):1287–1312.
  • Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.
  • Ahmed OM, Mohammed MT. Oxidative stress: the role of reactive oxygen species (ROS) and antioxidants in human diseases. Plant Arch. 2020;20:4089–4095.
  • Hameister R, Kaur C, Dheen ST, et al. Reactive oxygen/nitrogen species (ROS/RNS) and oxidative stress in arthroplasty. J Biomed Mater Res B Appl Biomater. 2020;108(5):2073–2087.
  • Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017;86:715–748.
  • Shlapakova TI, Kostin RK, Tyagunova EE. Reactive oxygen species: participation in cellular processes and progression of pathology. Russ J Bioorg Chem. 2020;46(5):657–674.
  • Kapoor D, Singh S, Kumar V, et al. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene. 2019;19:100182.
  • Ifeanyi OE. A review on free radicals and antioxidants. Int J Curr Res Med Sci. 2018;4(2):123–133.
  • Turkan I. ROS and RNS: key signalling molecules in plants. J Exp Bot. 2018;69(14):3313–3315.
  • Giles GI, Jacob C. Reactive sulfur species: an emerging concept in oxidative stress. De Gruyter. 2002;383:375–388.
  • Galano A, Raúl Alvarez‐Idaboy J. Computational strategies for predicting free radical scavengers’ protection against oxidative stress: where are we and what might follow? Int J Quantum Chem. 2019;119(2):e25665.
  • Ferreira CA, Ni D, Rosenkrans ZT, et al. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res. 2018;11(10):4955–4984.
  • Manahan SE. Toxicological chemistry and biochemistry. Boca Raton, Florida: CRC Press; 2002.
  • Gruhlke MC, Slusarenko AJ. The biology of reactive sulfur species (RSS). Plant Physiol Biochem. 2012;59:98–107.
  • Lau N, Pluth MD. Reactive sulfur species (RSS): persulfides, polysulfides, potential, and problems. Curr Opin Chem Biol. 2019;49:1–8.
  • Zheng YZ, Deng G, Zhang YC. Multiple free radical scavenging reactions of flavonoids. Dyes Pigm. 2022;198:109877.
  • Zheng YZ, Zhou Y, Guo R, et al. Structure-antioxidant activity relationship of ferulic acid derivatives: effect of ester groups at the end of the carbon side chain. Lwt. 2020;120:108932.
  • Kabanda MM, Gbashi S, Madala NE. Proportional coexistence of okanin chalcone glycoside and okanin flavanone glycoside in Bidens pilosa leaves and theoretical investigation on the antioxidant properties of their aglycones. Free Radic Res. 2021;55(1):53–70.
  • Mahapatra DK, Bharti SK, Asati V, et al. Perspectives of medicinally privileged chalcone based metal coordination compounds for biomedical applications. Eur J Med Chem. 2019;174:142–158.
  • Mittal A, Kakkar R. The antioxidant potential of retrochalcones isolated from liquorice root: a comparative DFT study. Phytochemistry. 2021;192:112964.
  • Biela M, Rimarčík J, Senajová E, et al. Antioxidant action of deprotonated flavonoids: thermodynamics of sequential proton-loss electron-transfer. Phytochemistry. 2020;180:112528.
  • Xue Y, Teng Y, Chen M, et al. Antioxidant activity and mechanism of avenanthramides: double H+/e– processes and role of the catechol, guaiacyl, and carboxyl groups. J Agric Food Chem. 2021;69(25):7178–7189.
  • Amić A, Marković Z, Dimitrić Marković JM, et al. The role of guaiacyl moiety in free radical scavenging by 3, 5-dihydroxy-4-methoxybenzyl alcohol: thermodynamics of 3H+/3e− mechanisms. Mol Phys. 2019;117(2):207–217.
  • Amić A, Marković Z, Marković JMD, et al. The 2H+/2e− free radical scavenging mechanisms of uric acid: thermodynamics of N-H bond cleavage. Comput Theor Chem. 2016;1077:2–10.
  • Galano A, Mazzone G, Alvarez-Diduk R, et al. Food antioxidants: chemical insights at the molecular level. Annu Rev Food Sci Technol. 2016;7:335–352.
  • Hammes-Schiffer S, Soudackov AV. Proton-coupled electron transfer in solution, proteins, and electrochemistry. J Phys Chem B. 2008;112(45):14108–14123.
  • Milenković DA, Dimić DS, Avdović EH, et al. Advanced oxidation process of coumarins by hydroxyl radical: towards the new mechanism leading to less toxic products. Chem Eng J. 2020;395:124971.
  • Marković Z. Study of the mechanisms of antioxidative action of different antioxidants. J Serb Soc Comput Mech. 2016;10(1):135–150.
  • Spiegel M. Current trends in computational quantum chemistry studies on antioxidant radical scavenging activity. J Chem Inf Model. 2022;62(11):2639–2658.
  • Wang G, Xue Y, An L, et al. Theoretical study on the structural and antioxidant properties of some recently synthesised 2, 4, 5-trimethoxy chalcones. Food Chem. 2015;171:89–97.
  • Tsiepe TJ, Kabanda MM, Serobatse K. Antioxidant properties of kanakugiol revealed through the hydrogen atom transfer, electron transfer and M2+ (M2+= Cu (II) or Co (II) ion) coordination ability mechanisms. A DFT study in vacuo and in solution. Food Biophys. 2015;10(3):342–359.
  • Serobatse KR, Kabanda MM. A theoretical study on the antioxidant properties of methoxy-substituted chalcone derivatives: a case study of kanakugiol and pedicellin through their Fe (II and III) coordination ability. J Theor Comput Chem. 2016;15(06):1650048.
  • Serobatse K, Kabanda MM. Antioxidant and antimalarial properties of butein and homobutein based on their ability to chelate iron (II and III) cations: a DFT study in vacuo and in solution. Eur Food Res Technol. 2016;242(1):71–90.
  • Tajammal A, Batool M, Ramzan A, et al. Synthesis, antihyperglycemic activity and computational studies of antioxidant chalcones and flavanones derived from 2,5 dihydroxyacetophenone. J Mol Struct. 2017;1148:512–520.
  • Tavadyan LA, Minasyan SH. Synergistic and antagonistic co-antioxidant effects of flavonoids with trolox or ascorbic acid in a binary mixture. J Chem Sci. 2019;131(5):1–11.
  • Hamlaoui I, Bencheraiet R, Bensegueni R, et al. Experimental and theoretical study on DPPH radical scavenging mechanism of some chalcone quinoline derivatives. J Mol Struct. 2018;1156:385–389.
  • Xue Y, Liu Y, Zhang L, et al. Antioxidant and spectral properties of chalcones and analogous aurones: theoretical insights. Int J Quantum Chem. 2019;119(3):e25808.
  • Stepanić V, Matijašić M, Horvat T, et al. Antioxidant activities of alkyl substituted pyrazine derivatives of chalcones—in vitro and in silico study. Antioxidants. 2019;8(4):90.
  • Ferreira MKA, da Silva AW, Silva FCO, et al. Anxiolytic-like effect of chalcone N-{(4′-[(E)-3-(4-fluorophenyl)-1-(phenyl) prop-2-en-1-one]} acetamide on adult zebrafish (Danio rerio): involvement of the GABAergic system. Behav Brain Res. 2019;374:111871.
  • Almeida-Neto FWQ, da Silva LP, Ferreira MKA, et al. Characterization of the structural, spectroscopic, nonlinear optical, electronic properties and antioxidant activity of the N-{4’-[(E)-3-(fluorophenyl)-1-(phenyl)-prop-2-en-1-one]}-acetamide. J Mol Struct. 2020;1220:128765.
  • Diaz-Uribe C, Vallejo W, Flórez J, et al. Furanyl chalcone derivatives as efficient singlet oxygen quenchers. An experimental and DFT/MRCI study. Tetrahedron. 2020;76(24):131248.
  • Boulebd H. The role of benzylic-allylic hydrogen atoms on the antiradical activity of prenylated natural chalcones: a thermodynamic and kinetic study. J Biomol Struct Dyn. 2021;39(6):1955–1964.
  • Lin Y, Kuang Y, Li K, et al. Nrf2 activators from glycyrrhiza inflata and their hepatoprotective activities against CCl4-induced liver injury in mice. Bioorg Med Chem. 2017;25(20):5522–5530.
  • Yun SR, Jun JG. An efficient first synthesis of licochalcone G. Bull Korean Chem Soc. 2015;36(11):2784–2787.
  • Mittal A, Kakkar R. The effect of solvent polarity on the antioxidant potential of echinatin, a retrochalcone, towards various ROS: a DFT thermodynamic study. Free Radic Res. 2020;54(10):777–786.
  • Ali Z, Hawwal M, Ahmed MM, et al. Licochalcone L, an undescribed retrochalcone from glycyrrhiza inflata roots. Nat Prod Res. 2022;36(1):200–206.
  • Liang M, Li X, Ouyang X, et al. Antioxidant mechanisms of echinatin and licochalcone A. Molecules. 2018;24(1):3.
  • Prabakaran G, Manivarman S, Bharanidharan M. Catalytic synthesis, ADMET, QSAR and molecular modeling studies of novel chalcone derivatives as highly potent antioxidant agents. Mater Today: Proceedings. 2022;48:400–408.
  • Moreira CA, Faria EC, Queiroz JE, et al. Structural insights and antioxidant analysis of a tri-methoxy chalcone with potential as a diesel-biodiesel blend additive. Fuel Process Technol. 2022;227:107122.
  • Amić A, Marković Z, Klein E, et al. Theoretical study of the thermodynamics of the mechanisms underlying antiradical activity of cinnamic acid derivatives. Food Chem. 2018;246:481–489.
  • Pelucchi M, Cavallotti C, Cuoci A, et al. Detailed kinetics of substituted phenolic species in pyrolysis bio-oils. React Chem Eng. 2019;4(3):490–506.
  • Biela M, Kleinová A, Klein E. Phenolic acids and their carboxylate anions: thermodynamics of primary antioxidant action. Phytochem. 2022;200:113254.
  • Shang C, Zhang Y, Sun C, et al. Tactfully improve the antioxidant activity of 2'-hydroxychalcone with the strategy of substituent, solvent and intramolecular hydrogen bond effects. J Mol Liq. 2022;362:119748.
  • Aly MRES, Fodah H, Saleh SY. Antiobesity, antioxidant and cytotoxicity activities of newly synthesized chalcone derivatives and their metal complexes. Eur J Med Chem. 2014;76:517–530.
  • Venkatesh T, Bodke YD, Kenchappa R, et al. Synthesis, antimicrobial and antioxidant activity of chalcone derivatives containing thiobarbitone nucleus. Med Chem. 2016;6(7):440–448.
  • Zainuri DA, Arshad S, Khalib NC, et al. Synthesis, XRD crystal structure, spectroscopic characterization (FT-IR, 1H and 13C NMR), DFT studies, chemical reactivity and bond dissociation energy studies using molecular dynamics simulations and evaluation of antimicrobial and antioxidant activities of a novel chalcone derivative, (E)-1-(4-bromophenyl)-3-(4-iodophenyl) prop-2-en-1-one. J Mol Struct. 2017;1128:520–533.
  • El-Sayed YS, Gaber M. Studies on chalcone derivatives: complex formation, thermal behavior, stability constant and antioxidant activity. Spectrochim Acta A Mol Biomol Spectrosc. 2015;137:423–431.
  • Sulpizio C, Müller ST, Zhang Q, et al. Synthesis, characterization, and antioxidant activity of Zn2+ and Cu2+ coordinated polyhydroxychalcone complexes. Monatsh Chem. 2016;147(11):1871–1881.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.