323
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Mito-TEMPO protects against bisphenol-A-induced testicular toxicity: an in vivo study

ORCID Icon, , & ORCID Icon
Pages 427-435 | Received 15 Mar 2022, Accepted 28 Sep 2022, Published online: 19 Oct 2022

References

  • Lauretta R, Sansone A, Sansone M, et al. Endocrine disrupting chemicals: effects on endocrine glands. Front Endocrinol (Lausanne). 2019;10:178.
  • Almeida S, Raposo A, Almeida‐González M, et al. Bisphenol A: Food exposure and impact on human health. Compr Rev Food Sci Food Saf. 2018;17(6):1503–1517.
  • Geens T, Aerts D, Berthot C, et al. A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol. 2012;50(10):3725–3740.
  • Kubwabo C, Kosarac I, Stewart B, et al. Migration of bisphenol a from plastic baby bottles, baby bottle liners and reusable polycarbonate drinking bottles. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2009;26(6):928–937.
  • Rahman MS, Pang MG. Understanding the molecular mechanisms of bisphenol a action in spermatozoa. Clin Exp Reprod Med. 2019;46(3):99–106.
  • Adegoke EO, Rahman MS, Pang MG. Bisphenols threaten male reproductive health via testicular cells. Front Endocrinol (Lausanne). 2020;11:624.
  • Meli R, Monnolo A, Annunziata C, et al. Oxidative stress and BPA toxicity: an antioxidant approach for male and female reproductive dysfunction. Antioxidants. 2020;9(5):405.
  • Chouhan S, Yadav SK, Prakash J, et al. Increase in the expression of inducible nitric oxide synthase on exposure to bisphenol A: a possible cause for decline in steroidogenesis in male mice. Environ Toxicol Pharmacol. 2015;39(1):405–416.
  • Diemer T, Allen JA, Hales KH, et al. Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology. 2003;144(7):2882–2891.
  • Bharati S, Shetty S. Mitochondria-Targeted antioxidants and cancer. In: Chakraborti S, Ray BK, Roychoudhury S. editors. Handbook of oxidative stress in cancer: mechanistic aspects. Springer: Singapore;2022, p. 1167–1188.
  • Shetty S, Anushree U, Kumar R, et al. Mitochondria-targeted antioxidant, mito-TEMPO mitigates initiation phase of N-Nitrosodiethylamine-induced hepatocarcinogenesis. Mitochondrion. 2021;58:123–130.
  • Shetty S, Kumar R, Bharati S. Mito-TEMPO, a mitochondria-targeted antioxidant, prevents N-nitrosodiethylamine-induced hepatocarcinogenesis in mice. Free Radic Biol Med. 2019;136:76–86.
  • Amraoui W, Adjabi N, Bououza F, et al. Modulatory role of selenium and vitamin E, natural antioxidants, against bisphenol A-induced oxidative stress in Wistar albinos rats. Toxicol Res. 2018;34(3):231–239.
  • El-Beshbishy HA, Aly HA, El-Shafey M. Lipoic acid mitigates bisphenol A-induced testicular mitochondrial toxicity in rats. Toxicol Ind Health. 2013;29(10):875–887.
  • Khan MR, Ahmed D. Protective effects of Digera muricata (L.) Mart. on testis against oxidative stress of carbon tetrachloride in rat. Food Chem Toxicol. 2009;47(6):1393–1399.
  • Kaur S, Saluja M, Bansal MP. Bisphenol a induced oxidative stress and apoptosis in mice testes: modulation by selenium. Andrologia. 2018;50(3):e12834.
  • Kini RD, Nayanatara AK, Pai S, et al. Infertility in male Wistar rats induced by cadmium chloride: Role of ascorbic acid. J Chin Clin Med. 2009;4:616–621.
  • Anushree U, Shetty S, Kulkarni SD, et al. Anticancer therapeutic potential of phosphorylated galactosylated chitosan against N-nitrosodiethyl amine-induced hepatocarcinogenesis. Arch Biochem Biophys. 2022;728:109375.
  • Leblond CP, Clermont Y. Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann N Y Acad Sci. 1952;55(4):548–573.
  • Johnsen SG. Testicular biopsy score count–a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormone Res Paediatrics. 1970;1(1):2–25.
  • Munir B, Qadir A, Tahir M. Negative effects of bisphenol a on testicular functions in albino rats and their abolitions with Tribulus terristeris L. Braz J Pharm Sci. 2017;53(3):1–9.
  • Keshtzar E, Khodayar MJ, Javadipour M, et al. Ellagic acid protects against arsenic toxicity in isolated rat mitochondria possibly through the maintaining of complex II. Hum Exp Toxicol. 2016;35(10):1060–1072.
  • Tabassum H, Parvez S, Pasha ST, et al. Protective effect of lipoic acid against methotrexate-induced oxidative stress in liver mitochondria. Food Chem Toxicol. 2010;48(7):1973–1979.
  • Kumar P, Kumar A. Possible role of sertraline against 3-nitropropionic acid induced behavioral, oxidative stress and mitochondrial dysfunctions in rat brain. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(1):100–108.
  • Pearl W, Cascarano J, Zweifach BW. Microdetermination of cytochrome oxidase in rat tissues by the oxidation of N-phenyl-p-phenylenediamine or ascorbic acid. J Histochem Cytochem. 1963;11(1):102–107.
  • Bhardwaj P, Goswami N, Narula P, et al. Zinc oxide nanoparticles (ZnO NP) mediated regulation of bacosides biosynthesis and transcriptional correlation of HMG-CoA reductase gene in suspension culture of Bacopa monnieri. Plant Physiol Biochem. 2018;130:148–156.
  • Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta (BBA) General Subjects. 1979;582(1):67–78.
  • Williams Jr CH, Arscott LD. 1971. [203] Glutathione reductase (Escherichia coli). In: Tabor H, Tabor CW, editors. Methods in enzymology, vol. 17. Academic Press; p. 503–509.
  • Kono Y. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys. 1978;186(1):189–195.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193(1):265–275.
  • Georgieva E, Ivanova D, Zhelev Z, et al. Mitochondrial dysfunction and redox imbalance as a diagnostic marker of “free radical diseases. Anticancer Res. 2017;37(10):5373–5381.
  • Huang M, Liu S, Fu L, et al. Bisphenol a and its analogues bisphenol S, bisphenol F and bisphenol AF induce oxidative stress and biomacromolecular damage in human granulosa KGN cells. Chemosphere. 2020;253:126707.
  • Wang K, Zhao Z, Ji W. Bisphenol a induces apoptosis, oxidative stress and inflammatory response in colon and liver of mice in a mitochondria-dependent manner. Biomed Pharmacother. 2019;117:109182.
  • Wang S, Wu K, Xue D, et al. Mechanism of deoxynivalenol mediated gastrointestinal toxicity: Insights from mitochondrial dysfunction. Food Chem Toxicol. 2021;153:112214.
  • Anjum S, Rahman S, Kaur M, et al. Melatonin ameliorates bisphenol A-induced biochemical toxicity in testicular mitochondria of mouse. Food Chem Toxicol. 2011;49(11):2849–2854.
  • Rezaee-Tazangi F, Zeidooni L, Rafiee Z, et al. Taurine effects on bisphenol A-induced oxidative stress in the mouse testicular mitochondria and sperm motility. JBRA Assist Reprod. 2020;24(4):428–435.
  • Khatun A, Rahman MS, Pang MG. Clinical assessment of the male fertility. Obstet Gynecol Sci. 2018;61(2):179–191.
  • Shi M, Sekulovski N, MacLean JA, et al. Prenatal exposure to bisphenol a analogues on male reproductive functions in mice. Toxicol Sci. 2018;163(2):620–631.
  • Zhang GL, Zhang XF, Feng YM, et al. Exposure to bisphenol a results in a decline in mouse spermatogenesis. Reprod Fertil Dev. 2013;25(6):847–859.
  • Trnka J, Blaikie FH, Smith RA, et al. A mitochondria-targeted nitroxide is reduced to its hydroxylamine by ubiquinol in mitochondria. Free Radic Biol Med. 2008;44(7):1406–1419.
  • Catalá A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids. 2009;157(1):1–11.
  • Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11(1):1–11.
  • Das J, Ghosh J, Manna P, et al. Taurine protects rat testes against NaAsO2-induced oxidative stress and apoptosis via mitochondrial dependent and independent pathways. Toxicol Lett. 2009;187(3):201–210.
  • Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909–950.
  • Palma FR, He C, Danes JM, et al. Mitochondrial superoxide dismutase: what the established, the intriguing, and the novel reveal about a key cellular redox switch. Antioxid Redox Signal. 2020;32(10):701–714.
  • Han D, Williams E, Cadenas E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J. 2001;353(Pt 2):411–416.
  • Adwas AA, Elsayed A, Azab AE, et al. Oxidative stress and antioxidant mechanisms in human body. J Appl Biotechnol Bioeng. 2019;6(1):43–47.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.