493
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Modulation of reactive oxygen species in cancers: recent advances

ORCID Icon, , , & ORCID Icon
Pages 447-470 | Received 19 Jul 2022, Accepted 12 Sep 2022, Published online: 19 Oct 2022

References

  • Bayir H. Reactive oxygen species. Crit Care Med. 2005;33(12):S498–S501.
  • Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015;30(1):11–26.
  • Riley PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol. 1994;65(1):27–33.
  • Arulselvan P, Fard MT, Tan WS, et al. Role of antioxidants and natural products in inflammation. Oxid Med Cell Longev. 2016;2016:5276130.
  • Poprac P, Jomova K, Simunkova M, et al. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci. 2017;38(7):592–607.
  • Di Meo S, Venditti P. Evolution of the knowledge of free radicals and other oxidants. Oxid Med Cell Longev. 2020;2020:9829176.
  • Biswas S, Das R, Banerjee ER. Role of free radicals in human inflammatory diseases. AIMS Biophysics. 2017;4(4):596–614.
  • Khorobrykh S, Havurinne V, Mattila H, et al. Oxygen and ROS in photosynthesis. Plants. 2020;9(1):91.
  • Nakamura H, Takada K. Reactive oxygen species in cancer: current findings and future directions. Cancer Sci. 2021;112(10):3945–3952.
  • Auten RL, Davis JM. Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr Res. 2009;66(2):121–127.
  • Li R, Jia Z, Trush MA. Defining ROS in biology and medicine. React Oxyg Species (Apex). 2016;1(1):9–21.
  • Patel R, Rinker L, Peng J, et al. Reactive oxygen species: the good and the bad. Reactive oxygen species (ROS) in living cells. Vol. 7. Norderstedt: BoD – Books on Demand; 2018.
  • Krumova K, Cosa G. Overview of reactive oxygen species. Singlet oxygen: applications in biosciences and nanosciences. Vol. 1. London: Royal Society of Chemistry; 2016.
  • Dayem AA, Hossain MK, Lee SB, et al. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci. 2017;18(1):120.
  • Jakubczyk K, Dec K, Kałduńsk J, et al. Reactive oxygen species - sources, functions, oxidative damage. Pol Merkur Lekarsk. 2020;48(284):124–127.
  • Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci. 2014;2:53.
  • Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:8416763.
  • Sharma P, Jha AB, Dubey RS, et al. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;2012:1–26.
  • Forrester SJ, Kikuchi DS, Hernandes MS, et al. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res. 2018;122(6):877–902.
  • Magder S. Reactive oxygen species: toxic molecules or spark of life? Crit Care. 2006;10(1):208.
  • Willson R, Dunster CA, Forni LG, et al. Organic free radicals and proteins in biochemical injury: electron-or hydrogen-transfer reactions? Philos Trans Royal Soc Lond. 1985;311(1152):545–563.
  • Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010;44(5):479–496.
  • Ozcan A, Ogun M. Biochemistry of reactive oxygen and nitrogen species. Basic principles and clinical significance of oxidative stress. Vol. 3. Norderstedt, Germany: BoD – Books on Demand; 2015. p. 37–58.
  • Sarmiento-Salinas FL, Perez-Gonzalez A, Acosta-Casique A, et al. Reactive oxygen species: role in carcinogenesis, cancer cell signaling and tumor progression. Life Sci. 2021;284:119942.
  • Trachootham D, Lu W, Ogasawara MA, et al. Redox regulation of cell survival. Antioxid Redox Signal. 2008;10(8):1343–1374.
  • Rosa AC, Corsi D, Cavi N, et al. Superoxide dismutase administration: a review of proposed human uses. Molecules. 2021;26(7):1844.
  • Glasauer A, Chandel NS. Ros. Curr Biol. 2013;23(3):R100–2.
  • Russano M, Napolitano A, Ribelli G, et al. Liquid biopsy and tumor heterogeneity in metastatic solid tumors: the potentiality of blood samples. J Exp Clin Cancer Res. 2020;39(1):1–13.
  • Li ZY, Yang Y, Ming M, et al. Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochem Biophys Res Commun. 2011;414(1):5–8.
  • Kumari S, Badana AK, G MM, et al. Reactive oxygen species: a key constituent in cancer survival. Biomark Insights. 2018;13:1177271918755391.
  • Sharifi-Rad M, Anil Kumar NV, Zucca P, et al. Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Front Physiol. 2020;11:694.
  • Block K, Gorin Y. Aiding and abetting roles of NOX oxidases in cellular transformation. Nat Rev Cancer. 2012;12(9):627–637.
  • Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–990.
  • Martin KR, Barrett JC. Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity. Hum Exp Toxicol. 2002;21(2):71–75.
  • Pinegin B, Vorobjeva N, Pashenkov M, et al. The role of mitochondrial ROS in antibacterial immunity. J Cell Physiol. 2018;233(5):3745–3754.
  • Yang Y, Karakhanova S, Hartwig W, et al. Mitochondria and mitochondrial ROS in cancer: novel targets for anticancer therapy. J Cell Physiol. 2016;231(12):2570–2581.
  • Tirichen H, Yaigoub H, Xu W, et al. Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. Front Physiol. 2021;12:398.
  • Diebold L, Chandel NS. Medicine, mitochondrial ROS regulation of proliferating cells. Free Radic Biol Med. 2016;100:86–93.
  • Sullivan LB, Chandel N. And metabolism, mitochondrial reactive oxygen species and cancer. Cancer Metab. 2014;2(1):1–12.
  • Andreyev AY, Kushnareva YE, Starkov A. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc). 2005;70(2):200–214.
  • Zhang J, Wang X, Vikash V, et al. ROS and ROS-Mediated cellular signaling. Oxid Med Cell Longev. 2016;2016:4350965.
  • Li X, Fang P, Mai J, et al. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. 2013;6(1):19.
  • Dunn JD, Alvarez LA, Zhang X, et al. Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol. 2015;6:472–485.
  • Willems PHGM, Rossignol R, Dieteren CEJ, et al. Redox homeostasis and mitochondrial dynamics. Cell Metab. 2015;22(2):207–218.
  • Dunn JD, Alvarez LAJ, Zhan X, et al. Mitochondrial ROS control of cancer. Seminars in cancer biology. Amsterdam: Elsevier; 2017.
  • Nickel A, Kohlhaas M, Maack C, et al. Mitochondrial reactive oxygen species production and elimination. J Mol Cell Cardiol. 2014;73:26–33.
  • Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909–950.
  • Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13.
  • Georgieva E, Ivanova D, Zhelev Z, et al. Mitochondrial dysfunction and redox imbalance as a diagnostic marker of “free radical diseases. Anticancer Res. 2017;37(10):5373–5381.
  • Grivennikova V, Vinogradov A. Mitochondrial production of reactive oxygen species. Biochemistry (Mosc). 2013;78(13):1490–1511.
  • Daiber A. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochim Biophys Acta. 2010;1797(6–7):897–906.
  • Annesley SJ, Fisher PR. Mitochondria in health and disease. Cells. 2019;8(7):680.
  • Pashkovskaia N, Gey U, Rödel G. Mitochondrial ROS direct the differentiation of murine pluripotent P19 cells. Stem Cell Res. 2018;30:180–191.
  • Oyewole AO, Birch Machin MA. Mitochondria‐targeted antioxidants. FASEB J. 2015;29(12):4766–4771.
  • Choi TG, Kim S. Physiological functions of mitochondrial reactive oxygen species. Free Radic Med Biol. 2016 Nov;100:81-85, p1–p10.
  • Brieger K, Schiavone S, Miller FJ, et al. Reactive oxygen species: from health to disease. Swiss Med Wkly. 2012;142:w13659.
  • Kawamura K, Qi F, Kobayashi J. Potential relationship between the biological effects of low-dose irradiation and mitochondrial ROS production. J Radiat Res. 2018;59(2):ii91–ii97.
  • Papa L, Manfredi G, Germain D, et al. SOD1, an unexpected novel target for cancer therapy. Genes Cancer. 2014;5(1–2):15–21.
  • Li C, Zhou HM. The role of manganese superoxide dismutase in inflammation defense. Enzyme Res. 2011;2011:387176.
  • Kim A. Modulation of MnSOD in cancer: epidemiological and experimental evidences. Toxicol Res. 2010;26(2):83–93.
  • Griess B, Tom E, Domann F, et al. Extracellular superoxide dismutase and its role in cancer. Free Radic Biol Med. 2017;112:464–479.
  • Altenhöfer S, Kleikers PWM, Radermacher KA, et al. The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cell Mol Life Sci. 2012;69(14):2327–2343.
  • Meitzler JL, Antony S, Wu Y, et al. NADPH oxidases: a perspective on reactive oxygen species production in tumor biology. Antioxid Redox Signal. 2014;20(17):2873–2889.
  • Bedard K, Lardy B, Krause KH. NOX family NADPH oxidases: not just in mammals. Biochimie. 2007;89(9):1107–1112.
  • Snezhkina AV, Kudryavtseva AV, Kardymon OL, et al. ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev. 2019;2019:6175804.
  • Panday A, Sahoo MK, Osorio D, et al. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 2015;12(1):5–23.
  • Buvelot H, Jaquet V, Krause KH. Mammalian NADPH oxidases. Methods Mol Biol. 2019;1982:17–36.
  • Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245–313.
  • Roy K, Wu Y, Meitzler JL, et al. NADPH oxidases and cancer. Clin Sci (Lond). 2015;128(12):863–875.
  • Parascandolo A, Laukkanen M, Signaling R. Carcinogenesis and reactive oxygen species signaling: interaction of the NADPH oxidase NOX1–5 and superoxide dismutase 1–3 signal transduction pathways. Inside Precision Med. 2019;30(3):443–486.
  • Wiktorin GH, Aydin E, Hellstrand K, et al. NOX2-Derived reactive oxygen species in cancer. Oxid Med Cell Longev. 2020;2020:7095902.
  • Skonieczna M, Hejmo T, Poterala-Hejmo A, et al. NADPH oxidases: insights into selected functions and mechanisms of action in cancer and stem cells. Oxid Med Cell Longev. 2017;2017:9420539.
  • Maraldi T, Angeloni C, Prata C, et al. NADPH oxidases: redox regulators of stem cell fate and function. Antioxidants (Basel). 2021;10(6):973.
  • Mondol AS, Tonks NK, Kamata T, et al. Nox4 redox regulation of PTP1B contributes to the proliferation and migration of glioblastoma cells by modulating tyrosine phosphorylation of coronin-1C. Free Radic Biol Med. 2014;67:285–291.
  • Mesfin FB, Al-Dhahir MA. Cancer, brain gliomas. Treasure Island (FL): Study Guide from StatPearls Publishing; 2017.
  • Rinaldi M, Caffo M, Minutoli L, et al. ROS and brain gliomas: an overview of potential and innovative therapeutic strategies. Int J Mol Sci. 2016;17(6):984.
  • Little AC, Sulovari A, Danyal K, et al. Paradoxical roles of dual oxidases in cancer biology. Free Radic Biol Med. 2017;110:117–132.
  • Shah JP. Thyroid carcinoma: epidemiology, histology, and diagnosis. Clin Adv Hematol Oncol. 2015;13(4):3.
  • Ameziane-El-Hassani R, Schlumberger M, Dupuy C. NADPH oxidases: new actors in thyroid cancer? Nat Rev Endocrinol. 2016;12(8):485–494.
  • Szanto I, Pusztaszeri M, Mavromati M. H2O2 metabolism in normal thyroid cells and in thyroid tumorigenesis: focus on NADPH oxidases. Antioxidants. 2019;8(5):126.
  • Lambeth JDJNRI. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4(3):181–189.
  • Song Y, Ruf J, Lothaire P, et al. Association of duoxes with thyroid peroxidase and its regulation in thyrocytes. J Clin Endocrinol Metab. 2010;95(1):375–382.
  • Weyemi U, Caillou B, Talbot M, et al. Intracellular expression of reactive oxygen species-generating NADPH oxidase NOX4 in normal and cancer thyroid tissues. Endocr Relat Cancer. 2010;17(1):27–37.
  • Qi R, Zhou Y, Li X, et al. DUOX2 expression is increased in Barrett esophagus and cancerous tissues of stomach and Colon. Gastroenterol Res Pract. 2016;2016:1835684.
  • Si J, Fu X, Behar J, et al. NADPH oxidase NOX5-S mediates acid-induced cyclooxygenase-2 expression via activation of NF-κBin Barrett’s esophageal adenocarcinoma cells. J Biol Chem. 2007;282(22):16244–16255.
  • Li D, Deconda D, Li A, et al. Effect of proton pump inhibitor therapy on NOX5, mPGES1 and iNOS expression in Barrett’s esophagus. Sci Rep. 2019;9(1):1–9.
  • Fu X, Beer DG, Behar J, et al. cAMP-response element-binding protein mediates acid-induced NADPH oxidase NOX5-S expression in Barrett esophageal adenocarcinoma cells. J Biol Chem. 2006;281(29):20368–20382.
  • Hong J, Resnick M, Behar J, et al. Acid-induced p16 hypermethylation contributes to development of esophageal adenocarcinoma via activation of NADPH oxidase NOX5-S. Am J Physiol Gastrointest Liver Physiol. 2010;299(3):G697–G706.
  • Si J, Behar J, Wands J, et al. STAT5 mediates PAF-induced NADPH oxidase NOX5-S expression in Barrett’s esophageal adenocarcinoma cells. Am J Physiol Gastrointest Liver Physiol. 2008;294(1):G174–G183.
  • Luxen S, Belinsky SA, Knaus UG. Silencing of DUOX NADPH oxidases by promoter hypermethylation in lung cancer. Cancer Res. 2008;68(4):1037–1045.
  • van der Vliet A, Medicine J. NADPH oxidases in lung biology and pathology: host defense enzymes, and more. Free Radic Biol Med. 2008;44(6):938–955.
  • Han M, Zhang T, Yang L, et al. Association between NADPH oxidase (NOX) and lung cancer: a systematic review and meta-analysis. J Thorac Dis. 2016;8(7):1704–1711.
  • Zhu Z, Zheng Z, Liu J. Comparison of COVID-19 and lung cancer via reactive oxygen species signaling. Front Oncol. 2021;11:2467.
  • Rudin CM, Brambilla E, Faivre-Finn C, et al. Small-cell lung cancer. Nat Rev Dis Primers. 2021;7(1):3–20.
  • Luxen S, Noack D, Frausto M, et al. Heterodimerization controls localization of Duox-DuoxA NADPH oxidases in airway cells. J Cell Sci. 2009;122(Pt 8):1238–1247.
  • Zeng C, Wu Q, Wang J, et al. NOX4 supports glycolysis and promotes glutamine metabolism in non-small cell lung cancer cells. Free Radic Biol Med. 2016;101:236–248.
  • Harper RW, Xu C, Eiserich JP, et al. Differential regulation of dual NADPH oxidases/peroxidases, Duox1 and Duox2, by Th1 and Th2 cytokines in respiratory tract epithelium. FEBS Lett. 2005;579(21):4911–4917.
  • Geiszt M, Witta J, Baff J, et al. Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J. 2003;17(11):1–14.
  • Forteza R, Salathe M, Miot F, et al. Regulated hydrogen peroxide production by duox in human airway epithelial cells. Am J Respir Cell Mol Biol. 2005;32(5):462–469.
  • Wesley UV, Bove PF, Hristova M, et al. Airway epithelial cell migration and wound repair by ATP-mediated activation of dual oxidase 1. J Biol Chem. 2007;282(5):3213–3220.
  • Malla RR, Raghu H, Rao JS, et al. Regulation of NADPH oxidase (Nox2) by lipid rafts in breast carcinoma cells. Int J Oncol. 2010;37(6):1483–1493.
  • Ostrakhovitch EA, Li SSC. B.c.r. Li, and treatment, NIP1/DUOXA1 expression in epithelial breast cancer cells: regulation of cell adhesion and actin dynamics. Breast Cancer Res Treat. 2010;119(3):773–786.
  • Vaquero EC, Edderkaoui M, Pandol SJ, et al. Reactive oxygen species produced by NAD (P) H oxidase inhibit apoptosis in pancreatic cancer cells. J Biol Chem. 2004;279(33):34643–34654.
  • Hiraga R, Kato M, Miyagawa S, et al. Nox4-derived ROS signaling contributes to TGF-β-induced epithelial-mesenchymal transition in pancreatic cancer cells. Anticancer Res. 2013;33(10):4431–4438.
  • Wu Y, Antony S, Hewitt SM, et al. Functional activity and tumor-specific expression of dual oxidase 2 in pancreatic cancer cells and human malignancies characterized with a novel monoclonal antibody. Int J Oncol. 2013;42(4):1229–1238.
  • Choi J, Corder NLB, Koduru B, et al. Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma. Free Radic Biol Med. 2014;72:267–284.
  • Eun HS, Cho SY, Joo JS, et al. Gene expression of NOX family members and their clinical significance in hepatocellular carcinoma. Sci Rep. 2017;7(1):1–10.
  • Chen S, Ling Q, Yu K, et al. Dual oxidase 1: a predictive tool for the prognosis of hepatocellular carcinoma patients. Oncol Rep. 2016;35(6):3198–3208.
  • Campisano S, Bertran E, Caballero-Díaz D, et al. Paradoxical role of the NADPH oxidase NOX4 in early preneoplastic stages of hepatocytes induced by amino acid deprivation. Biochim Biophys Acta Gen Subj. 2019;1863(4):714–722.
  • Herranz-Itúrbide M, Peñuelas-Haro I, Espinosa-Sotelo R, et al. The TGF-β/NADPH oxidases axis in the regulation of liver cell biology in health and disease. Cells. 2021;10(9):2312.
  • Machlowska J, Baj J, Sitarz M, et al. Gastric cancer: epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int J Mol Sci. 2020;21(11):4012.
  • Sitarz R, Skierucha M, Mielko J, et al. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res. 2018;10:239–248.
  • You X, Ma M, Hou G, et al. Gene expression and prognosis of NOX family members in gastric cancer. Onco Targets Ther. 2018;11:3065–3074.
  • Echizen K, Horiuchi K, Aoki Y, et al. NF-κB-induced NOX1 activation promotes gastric tumorigenesis through the expansion of SOX2-positive epithelial cells. Oncogene. 2019;38(22):4250–4263.
  • Yamaura M, Mitsushita J, Furuta S, et al. NADPH oxidase 4 contributes to transformation phenotype of melanoma cells by regulating G2-M cell cycle progression. Cancer Res. 2009;69(6):2647–2654.
  • de Melo FHM, Molognoni F, Jasiulionis MG. The role of oxidative stress in melanoma development, progression and treatment. Recent advances in the biology, therapy and management of melanoma. Norderstedt, Germany: BoD – Books on Demand; 2013. p. 83.
  • Venza I, Venza M, Visalli M, et al. ROS as regulators of cellular processes in melanoma. Oxid Med Cell Longevity. 2021;2021:1208690.
  • Liu F, Gomez Garcia AM, Meyskens FL. NADPH oxidase 1 overexpression enhances invasion via matrix metalloproteinase-2 and epithelial–mesenchymal transition in melanoma cells. J Invest Dermatol. 2012;132(8):2033–2041.
  • Antony S, Jiang G, Wu Y, et al. NADPH oxidase 5 (NOX5)—induced reactive oxygen signaling modulates normoxic HIF‐1α and p27Kip1 expression in malignant melanoma and other human tumors. Mol Carcinog. 2017;56(12):2643–2662.
  • Carvalho LAC, Queijo RG, Baccaro ALB, et al. Redox-related proteins in melanoma progression. Antioxidants. 2022;11(3):438.
  • Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–1152.
  • Kiffin R, Grauers Wiktorin H, Nilsson MS, et al. Anti-leukemic properties of histamine in monocytic leukemia: the role of NOX2. Front Oncol. 2018;8:218.
  • Dakik H, El Dor M, Leclerc J, et al. Characterization of NADPH oxidase expression and activity in acute myeloid leukemia cell lines: a correlation with the differentiation status. Antioxidants. 2021;10(3):498.
  • Hole PS, Darley RL, Tonks AJB. Do reactive oxygen species play a role in myeloid leukemias? J Am Soc Hematol. 2011;117(22):5816–5826.
  • Adane B, Ye H, Khan N, et al. The hematopoietic oxidase NOX2 regulates self-renewal of leukemic stem cells. Cell Rep. 2019;27(1):238–254. e6.
  • Zhou H, Xu RJP. Leukemia stem cells: the root of chronic myeloid leukemia. Protein Cell. 2015;6(6):403–412.
  • Naughton R, Quiney C, Turner SD, et al. Bcr-Abl-mediated redox regulation of the PI3K/AKT pathway. Leukemia. 2009;23(8):1432–1440.
  • Lewis WD, Lilly S, Jones KL. Lymphoma: diagnosis and treatment. Am Fam Physician. 2020;101(1):34–41.
  • Gonçalves JDS, Carvalho FL, Coutinho ICdR, et al. NADPH oxidase 5 upregulation is associated with lymphoma aggressiveness. Rev Assoc Med Bras (1992). 2020;66(2):210–215.
  • Song X, Wang Z, Liang H, et al. Dioscin induces gallbladder cancer apoptosis by inhibiting ROS-mediated PI3K/AKT signalling. Int J Biol Sci. 2017;13(6):782–793.
  • Kanthan R, Senger JL, Ahmed S, et al. Gallbladder cancer in the 21st century. J Oncol. 2015;2015:1–26.
  • Wang FT, Hassan M, Ansari KH, et al. Upregulated NOX1 expression in gallbladder cancer‑associated fibroblasts predicts a poor prognosis. Oncol Rep. 2019;42(4):1475–1486.
  • Zhan M, Wang H, Chen T, et al. NOX1 mediates chemoresistance via HIF1α/MDR1 pathway in gallbladder cancer. Biochem Biophys Res Commun. 2015;468(1–2):79–85.
  • Capitanio U, Bensalah K, Bex A, et al. Epidemiology of renal cell carcinoma. Eur Urol. 2019;75(1):74–84.
  • Cairns P. Renal cell carcinoma. Cancer Biomark. 2011;9(1–6):461–473.
  • Meitzler JL, Makhlouf HR, Antony S, et al. Decoding NADPH oxidase 4 expression in human tumors. Redox Biol. 2017;13:182–195.
  • Ravindran F, Choudhary B. Ovarian cancer: molecular classification and targeted therapy, in ovarian Cancer-Updates in tumour biology and therapeutics. London: IntechOpen; 2021.
  • Liu WJ, Huang YX, Wang W, et al. NOX4 signaling mediates cancer development and therapeutic resistance through HER3 in ovarian cancer cells. Cells. 2021;10(7):1647.
  • Hou D, Liu Z, Xu X, et al. Increased oxidative stress mediates the antitumor effect of PARP inhibition in ovarian cancer. Redox Biol. 2018;17:99–111.
  • Leslie S, Soon-Sutton TL, Sajjad H, et al. Prostate cancer. Treasure Island (FL): Study Guide from StatPearls Publishing; 2017.
  • Holl M, Koziel R, Schäfer G, et al. ROS signaling by NADPH oxidase 5 modulates the proliferation and survival of prostate carcinoma cells. Mol Carcinog. 2016;55(1):27–39.
  • Itoh T, Terazawa R, Kojima K, et al. Cisplatin induces production of reactive oxygen species via NADPH oxidase activation in human prostate cancer cells. Free Radic Res. 2011;45(9):1033–1039.
  • Lim SD, Sun C, Lambeth JD, et al. Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate. 2005;62(2):200–207.
  • Wu QQ, Zheng B, Weng GB, et al. Downregulated NOX4 underlies a novel inhibitory role of microRNA‐137 in prostate cancer. J Cell Biochem. 2019;120(6):10215–10227.
  • Banskota S, Regmi SC, Kim JA. NOX1 to NOX2 switch deactivates AMPK and induces invasive phenotype in Colon cancer cells through overexpression of MMP-7. Mol Cancer. 2015;14(1):1–14.
  • Waghela BN, Vaidya FU, Pathak CJB. Upregulation of NOX-2 and Nrf-2 promotes 5-Fluorouracil resistance of human Colon carcinoma (HCT-116) cells. Biochemistry (Mosc). 2021;86(3):262–274.
  • Floyd RA. Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J. 1990;4(9):2587–2597.
  • Tan BL, Norhaizan ME, Liew WPP, et al. Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharmacol. 2018;9:1162.
  • Salehi B, Martorell M, Arbiser J, et al. Antioxidants: positive or negative actors? Biomolecules. 2018;8(4):124.
  • Santos-Sánchez NF, Salas-Coronado R, Villanueva-Cañongo C, et al. Antioxidant compounds and their antioxidant mechanism. Antioxidants. 2019;10:1–29.
  • Reczek CR, Chandel NS. The two faces of reactive oxygen species in cancer. Annu Rev Cancer Biol. 2017;1(1):79–98.
  • Galadari S, Rahman A, Pallichankandy S, et al. Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic Biol Med. 2017;104:144–164.
  • Poljsak B, Šuput D, Milisav I, et al. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev. 2013;2013:1–11.
  • Morry J, Ngamcherdtrakul W, Yantasee W. Oxidative stress in cancer and fibrosis: opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol. 2017;11:240–253.
  • Lü JM, Lin PH, Yao Q, et al. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med. 2010;14(4):840–860.
  • Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2015;15(1):1–22.
  • Harrison IP, Selemidis S. Understanding the biology of reactive oxygen species and their link to cancer: NADPH oxidases as novel pharmacological targets. Clin Exp Pharmacol Physiol. 2014;41(8):533–542.
  • George S, Abrahamse HJA. Redox potential of antioxidants in cancer progression and prevention. Antioxidants. 2020;9(11):1156.
  • Birben E, Sahiner UM, Sackesen C, et al. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9–19.
  • Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12(12):931–947.
  • Athreya K, Xavier M. Cancer. Nutr Cancer. 2017;69(8):1099–1104.
  • Lobo V, Patil A, Phatak A, et al. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118–126.
  • Cadenas E. Basic mechanisms of antioxidant activity. Biofactors. 1997;6(4):391–397.
  • Bačić G, Spasojević I, Šećerov B, et al. Spin-trapping of oxygen free radicals in chemical and biological systems: new traps, radicals and possibilities. Spectrochim Acta Part A Mol Biomol Spectrosc. 2008;69(5):1354–1366.
  • Floyd R, Carney C. Society, free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol. 1992;32(S1):S22–S27.
  • Rehorek D. Spin trapping of inorganic radicals. Chem Soc Rev. 1991;20(3):341–353.
  • Samuni A, Krishna CM, Mitchell JB, et al. Superoxide reaction with nitroxides. Free Radic Res Commun. 1990;9(3–6):241–249.
  • Swartz HM. Principles of the metabolism of nitroxides and their implications for spin trapping. Free Radic Res Commun. 1990;9(3–6):399–405.
  • Engman L, Persson J, Vessman K, et al. Organotellurium compounds as efficient retarders of lipid peroxidation in methanol. Free Radical Biology. 1995;19(4):441–452.
  • Samuni A, Krishna CM, Riesz P, et al. A novel metal-free low molecular weight superoxide dismutase mimic. J Biol Chem. 1988;263(34):17921–17924.
  • Ladas EJ, Jacobson JS, Kennedy DD, et al. Antioxidants and cancer therapy: a systematic review. J Clin Oncol. 2004;22(3):517–528.
  • Chaiswing L, St Clair WH, St Clair DK, et al. Redox paradox: a novel approach to therapeutics-resistant cancer. Antioxid Redox Signal. 2018;29(13):1237–1272.
  • Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Seminars in cell & developmental biology. Amsterdam, Netherlands: Elsevier; 2018.
  • Aboelella NS, Brandle C, Kim T, et al. Oxidative stress in the tumor microenvironment and its relevance to cancer immunotherapy. Cancers. 2021;13(5):986.
  • Pelicano H, Feng L, Zhou Y, et al. Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem. 2003;278(39):37832–37839.
  • Rahal A, Kumar A, Singh V, et al. Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int. 2014;2014:1–19.
  • Laroussi M. Cold plasma in medicine and healthcare: the new frontier in low temperature plasma applications. Front Phys. 2020;8:74.
  • Kim SJ, Kim HS, Seo YR, et al. Understanding of ROS-inducing strategy in anticancer therapy. Oxid Med Cell Longevity. 2019;2019:1–12.
  • Pike LS, Smift AL, Croteau NJ, et al. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta -Bioenerget. 2011;1807(6):726–734.
  • Trachootham D, Zhou Y, Zhang H, et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell. 2006;10(3):241–252.
  • Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 2014;15(6):411–421.
  • Datta A, Mishra S, Manna K, et al. Pro-oxidant therapeutic activities of cerium oxide nanoparticles in colorectal carcinoma cells. ACS Omega. 2020;5(17):9714–9723.
  • Firczuk M, Bajor M, Graczyk-Jarzynka A, et al. Harnessing altered oxidative metabolism in cancer by augmented prooxidant therapy. Cancer Lett. 2020;471:1–11.
  • Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8(7):579–591.
  • Perillo B, Di Donato M, Pezone A, et al. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020;52(2):192–203.
  • He L, He T, Farrar S, et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 2017;44(2):532–553.
  • Choi DG, Venkatesan J, Shim MS. Selective anticancer therapy using pro-oxidant drug-loaded chitosan–fucoidan nanoparticles. Int J Mol Sci. 2019;20(13):3220.
  • Ammendola S, d’Abusco AS. Oxidative stress, senescence and Mediterranean diet effects on osteoarthritis. Aging. Amsterdam, Netherlands: Elsevier; 2020. p. 73–81.
  • Allen C, Her S, Jaffray D. Radiotherapy for cancer: present and future. Adv Drug Deliv Rev. 2017;109:1–2.
  • Craig DJ, Nanavaty NS, Devanaboyina M, et al. The abscopal effect of radiation therapy. Future Oncol. 2021;17(13):1683–1694.
  • Baskar R, Dai J, Wenlong N, et al. Biological response of cancer cells to radiation treatment. Front Mol Biosci. 2014;1:24.
  • Beaton L, Bandula S, Gaze MN, et al. How rapid advances in imaging are defining the future of precision radiation oncology. Br J Cancer. 2019;120(8):779–790.
  • Toy HI, Karakülah G, Kontou PI, et al. Investigating molecular determinants of cancer cell resistance to ionizing radiation through an integrative bioinformatics approach. Front Cell Dev Biol. 2021;9:770.
  • Baskar R, Lee KA, Yeo R, et al. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193–199.
  • Wang Y, Qi H, Liu Y, et al. The double-edged roles of ROS in cancer prevention and therapy. Theranostics. 2021;11(10):4839–4857.
  • Gianfaldoni S, Gianfaldoni R, Wollina U, et al. An overview on radiotherapy: from its history to its current applications in dermatology. Open Access Maced J Med Sci. 2017;5(4):521–525.
  • Jit BP, Pradhan B, Dash R, et al. Phytochemicals: potential therapeutic modulators of radiation induced signaling pathways. Antioxidants. 2021;11(1):49.
  • Chen HH, Kuo M. Improving radiotherapy in cancer treatment: promises and challenges. Oncotarget. 2017;8(37):62742–62758.
  • Dubey P, Sertorio M, Takiar V. Therapeutic advancements in metal and metal oxide nanoparticle-based radiosensitization for head and neck cancer therapy. Cancers. 2022;14(3):514.
  • Baldacchino G, Brun E, Denden I, et al. Importance of radiolytic reactions during high-LET irradiation modalities: LET effect, role of O2 and radiosensitization by nanoparticles. Cancer Nano. 2019;10(1):1–21.
  • Lousada CM, Soroka IL, Yagodzinskyy Y, et al. Gamma radiation induces hydrogen absorption by copper in water. Sci Rep. 2016;6(1):1–8.
  • Caër LS. Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water. 2011;3(1):235–253.
  • Hernandez C, Huebener P, Schwabe R. Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene. 2016;35(46):5931–5941.
  • Grass GD, Krishna N, Kim S. The immune mechanisms of abscopal effect in radiation therapy. Curr Probl Cancer. 2016;40(1):10–24.
  • Kaminski JM, Shinohara E, Summers JB, et al. The controversial abscopal effect. Cancer Treat Rev. 2005;31(3):159–172.
  • Vénéreau E, Ceriotti C, Bianchi ME. DAMPs from cell death to new life. Front Immunol. 2015;6:422.
  • Jia P, Dai C, Cao P, et al. The role of reactive oxygen species in tumor treatment. RSC Adv. 2020;10(13):7740–7750.
  • Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy–mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098–1107.
  • Chilakamarthi U, Giribabu L. Photodynamic therapy: past, present and future. Chem Rec. 2017;17(8):775–802.
  • Zhang Q, Li L. Photodynamic combinational therapy in cancer treatment. J Buon. 2018;23(3):561–567.
  • Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90(12):889–905.
  • Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61(4):250–281.
  • Choudhary R, Reddy SS, Nagi R, et al. The effect of photodynamic therapy on oral-premalignant lesions: a systematic review. J Clin Exp Dent. 2022;14(3):e285–e292.
  • Dobson J, de Queiroz GF, Golding JP. Golding, photodynamic therapy and diagnosis: principles and comparative aspects. Vet J. 2018;233:8–18.
  • van Straten D, Mashayekhi V, de Bruijn H, et al. Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers. 2017;9(12):19.
  • Correia JH, Rodrigues JA, Pimenta S, et al. Photodynamic therapy review: principles, photosensitizers, applications, and future directions. Pharmaceutics. 2021;13(9):1332.
  • Josefsen LB, Boyle RW. Photodynamic therapy and the development of metal-based photosensitisers. Met-Based Drugs. 2008;2008:1–23.
  • Banerjee SM, MacRobert AJ, Mosse CA, et al. Photodynamic therapy: inception to application in breast cancer. Breast. 2017;31:105–113.
  • Triesscheijn M, Baas P, Schellens JHM, et al. Photodynamic therapy in oncology. Oncologist. 2006;11(9):1034–1044.
  • McCaughan J. Aging, photodynamic therapy. Drugs Aging. 1999;15(1):49–68.
  • Li X, Lovell JF, Yoon J, et al. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol. 2020;17(11):657–674.
  • Macdonald IJ, Dougherty TJ. Phthalocyanines, basic principles of photodynamic therapy. J Porphyrins Phthalocyanines. 2001;05(02):105–129.
  • Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–387.
  • Privat-Maldonado A, Schmidt A, Lin A, et al. ROS from physical plasmas: redox chemistry for biomedical therapy. Oxid Med Cell Longev. 2019;2019:1–29.
  • Cheng X, Sherman J, Murphy W, et al. The effect of tuning cold plasma composition on glioblastoma cell viability. PLoS One. 2014;9(5):e98652.
  • Graves D. Polymers, reactive species from cold atmospheric plasma: implications for cancer therapy. Plasma Process Polym. 2014;11(12):1120–1127.
  • Chen Z, Cheng X, Lin L, et al. Cold atmospheric plasma discharged in water and its potential use in cancer therapy. J Phys D Appl Phys. 2017;50(1):015208.
  • Gandhirajan RK, Endlich N, Bekeschus S, et al. Zebrafish larvae as a toxicity model in plasma medicine. Plasma Process Polym. 2021;18(3):2000188.
  • Gandhirajan RK, Meyer D, Sagwal SK, et al. The amino acid metabolism is essential for evading physical plasma-induced tumour cell death. Br J Cancer. 2021;124(11):1854–1863.
  • Pasqual-Melo G, Nascimento T, Sanches LJ, et al. Plasma treatment limits cutaneous squamous cell carcinoma development in vitro and in vivo. Cancers. 2020;12(7):1993.
  • Bekeschus S, Freund E, Wende K, et al. Hmox1 upregulation is a mutual marker in human tumor cells exposed to physical plasma-derived oxidants. Antioxidants. 2018;7(11):151.
  • Reiazi R, Akbari ME, Norozi A, et al. Application of cold atmospheric plasma (CAP) in cancer therapy: a review. Int J Cancer Manag. 2017;10(3):e8728.
  • Keidar M. Technology, plasma for cancer treatment. Plasma Sources Sci Technol. 2015;24(3):033001.
  • Dubey SK, Parab S, Alexander A, et al. Cold atmospheric plasma therapy in wound healing. Process Biochem. 2022;112:112–123.
  • Jung JM, Yoon HK, Jung CJ, et al. Cold plasma treatment promotes full-thickness healing of skin wounds in murine models. Int J Lower Extremity Wounds. 2021;15347346211002144.
  • Keidar M, Walk R, Shashurin A, et al. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer. 2011;105(9):1295–1301.
  • Bekeschus S, Rödder K, Fregin B, et al. Toxicity and immunogenicity in murine melanoma following exposure to physical plasma-derived oxidants. Oxid Med Cell Longev. 2017;2017:1–12.
  • Pasqual-Melo G, Gandhirajan RK, Stoffels I, et al. Targeting malignant melanoma with physical plasmas. Clin Plasma Med. 2018;10:1–8.
  • Sagwal SK, Pasqual-Melo G, Bodnar Y, et al. Combination of chemotherapy and physical plasma elicits melanoma cell death via upregulation of SLC22A16. Cell Death Dis. 2018;9(12):1179.
  • Gandhirajan RK, Rödder K, Bodnar Y, et al. Cytochrome C oxidase inhibition and cold plasma-derived oxidants synergize in melanoma cell death induction. Sci Rep. 2018;8(1):1–12.
  • Kim D, Gweon B, Kim DB, et al. A feasibility study for the cancer therapy using cold plasma. in 13th International Conference on Biomedical Engineering. 3- December 2008, Singapore: Springer; 2009.
  • Braný D, Dvorská D, Halašová E, et al. Cold atmospheric plasma: a powerful tool for modern medicine. Int J Mol Sci. 2020;21(8):2932.
  • Izadjoo M, Zack S, Kim H, et al. Medical applications of cold atmospheric plasma: state of the science. J Wound Care. 2018;27(9):S4–S10.
  • Bernhardt T, Semmler ML, Schäfer M, et al. Plasma medicine: applications of cold atmospheric pressure plasma in dermatology. Oxid Med Cell Longev. 2019;2019:1–10.
  • Malyavko A, Yan D, Wang Q, et al. Cold atmospheric plasma cancer treatment, direct versus indirect approaches. Mater Adv. 2020;1(6):1494–1505.
  • Keidar M, Shashurin A, Volotskova O, et al. Cold atmospheric plasma in cancer therapy. Phys Plasmas. 2013;20(5):057101.
  • Yan D, Sherman JH, Keidar MJO. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget. 2017;8(9):15977–15995.
  • Tornin J, Labay C, Tampieri F, et al. Evaluation of the effects of cold atmospheric plasma and plasma-treated liquids in cancer cell cultures. Nat Protoc. 2021;16(6):2826–2850.
  • Lin AG, Xiang B, Merlino DJ, et al. Non-thermal plasma induces immunogenic cell death in vivo in murine CT26 colorectal tumors. Oncoimmunology. 2018;7(9):e1484978.
  • Zafari P, Yadani Z, Akhavan-Niaki H, et al. Effect of cold atmospheric plasma on gene expression and methylation of genes involved in colorectal cancer. J Mazandaran Univ Med Sci. 2022;31(204):26–39.
  • Huang P, Feng L, Oldham EA, et al. Superoxide dismutase as a target for the selective killing of cancer cells. Nature. 2000;407(6802):390–395.
  • Sun J, Wei Q, Zhou Y, et al. A systematic analysis of FDA-approved anticancer drugs. BMC Syst Biol. 2017;11(S5):1–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.