173
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Serum and cecal metabolic profile of the insulin resistant and dyslipidemic p47phox knockout mice

, , , ORCID Icon, & ORCID Icon
Pages 483-497 | Received 18 Jul 2022, Accepted 14 Sep 2022, Published online: 17 Oct 2022

References

  • Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17):6275.
  • Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114(12):1752–1761.
  • Jiang F, Lim HK, Morris MJ, et al. Systemic upregulation of NADPH oxidase in diet-induced obesity in rats. Redox Rep. 2011;16(6):223–229.
  • Ait‐Aissa K, Kassan M, Trebak M, et al. Enhanced p47phox NADPH Sub‐unit expression impairs conductance and resistance vascular function in obese mice. FASEB J. 2015;29(S1).
  • Matsuzawa-Nagata N, Takamura T, Ando H, et al. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism. 2008;57(8):1071–1077.
  • Lamb RE, Goldstein BJ. Modulating an oxidative-inflammatory cascade: potential new treatment strategy for improving glucose metabolism, insulin resistance, and vascular function. Int J Clin Pract. 2008;62(7):1087–1095.
  • Mahadev K, Motoshima H, Wu X, et al. The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol. 2004;24(5):1844–1854.
  • Tiganis T. Reactive oxygen species and insulin resistance: the good, the bad and the ugly. Trends Pharmacol Sci. 2011;32(2):82–89.
  • Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal. 2007;19(9):1807–1819.
  • Xu X, Yavar Z, Verdin M, et al. Effect of early particulate air pollution exposure on obesity in mice: role of p47phox. Arterioscler Thromb Vasc Biol. 2010;30(12):2518–2527.
  • Pepping JK, Freeman LR, Gupta S, et al. NOX2 deficiency attenuates markers of adiposopathy and brain injury induced by high-fat diet. Am J Physiol Endocrinol Metab. 2013;304(4):E392–E404.
  • Souto Padron de Figueiredo A, Salmon AB, Bruno F, et al. Nox2 mediates skeletal muscle insulin resistance induced by a high fat diet. J Biol Chem. 2015;290(21):13427–13439.
  • Li Y, Mouche S, Sajic T, et al. Deficiency in the NADPH oxidase 4 predisposes towards diet-induced obesity. Int J Obes. 2012;36(12):1503–1513.
  • Loh K, Deng H, Fukushima A, et al. Reactive oxygen species enhance insulin sensitivity. Cell Metab. 2009;10(4):260–272.
  • Chiarugi P, Cirri P. Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem Sci. 2003;28(9):509–514.
  • Bashan N, Kovsan J, Kachko I, et al. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev. 2009;89(1):27–71.
  • Goldstein BJ, Mahadev K, Wu X, et al. Role of insulin-induced reactive oxygen species in the insulin signaling pathway. Antioxid Redox Signal. 2005;7(7–8):1021–1031.
  • Ronis MJJ, Sharma N, Vantrease J, et al. Female mice lacking p47phox have altered adipose tissue gene expression and are protected against high fat-induced obesity. Physiol Genomics. 2013;45(9):351–366.
  • Costford SR, Castro-Alves J, Chan KL, et al. Mice lacking NOX2 are hyperphagic and store fat preferentially in the liver. Am J Physiol Endocrinol Metab. 2014;306(12):E1341–E1353.
  • Kanuri BN, Rebello SC, Pathak P, et al. Glucose and lipid metabolism alterations in liver and adipose tissue pre-dispose p47phox knockout mice to systemic insulin resistance. Free Radic Res. 2018;52(5):568–582.
  • Huang CK, Zhan L, Hannigan MO, et al. p47(phox)-deficient NADPH oxidase defect in neutrophils of diabetic mouse strains, C57BL/6J-m db/db and db/+. J Leukoc Biol. 2000;67(2):210–215.
  • Zhang WJ, Wei H, Frei B. Genetic deficiency of NADPH oxidase does not diminish, but rather enhances, LPS-induced acute inflammatory responses in vivo. Free Radic Biol Med. 2009;46(6):791–798.
  • Jackson SH, Gallin JI, Holland SM. The p47phox mouse knock-out model of chronic granulomatous disease. J Exp Med. 1995;182(3):751–758.
  • Roos D. The genetic basis of chronic granulomatous disease. Immunol Rev. 1994;138:121–157.
  • O'Neill S, Brault J, Stasia M-J, et al. Genetic disorders coupled to ROS deficiency. Redox Biol. 2015;6:135–156.
  • Falcone EL, Abusleme L, Swamydas M, et al. Colitis susceptibility in p47phox−/− mice is mediated by the microbiome. Microbiome. 2016;4:13.
  • Pircalabioru G, Aviello G, Kubica M, et al. Defensive mutualism rescues NADPH oxidase inactivation in gut infection. Cell Host Microbe. 2016;19(5):651–663.
  • Felmy B, Songhet P, Slack EMC, et al. NADPH oxidase deficient mice develop colitis and bacteremia upon infection with normally avirulent, TTSS-1- and TTSS-2-deficient Salmonella typhimurium. PLOS One. 2013;8(10):e77204.
  • Li C, Liang Y, Qiao Y. Messengers from the gut: gut microbiota-derived metabolites on host regulation. Front Microbiol. 2022;13:1339.
  • Khan MP, Kumar Singh A, Joharapurkar AA, et al. Pathophysiological mechanism of bone loss in type 2 diabetes involves inverse regulation of osteoblast function by PGC-1α and skeletal muscle atrogenes: adipor1 as a potential target for reversing diabetes-induced osteopenia. Diabetes. 2015;64(7):2609–2623.
  • Aggarwal H, Pathak P, Singh P, et al. Systemic insulin resistance and metabolic perturbations in chow fed inducible nitric oxide synthase knockout male mice: partial reversal by nitrite supplementation. Antioxidants. 2020;9(8):736.
  • Speakman JR. Measuring energy metabolism in the mouse – theoretical, practical, and analytical considerations. Front Physiol. 2013;4:34.
  • Wang Y, Zheng Y, Nishina PM, et al. A new mouse model of metabolic syndrome and associated complications. J Endocrinol. 2009;202(1):17–28.
  • Thevaranjan N, Puchta A, Schulz C, et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe. 2017;21(4):455–466.e4.
  • Pathak P, Kanshana JS, Kanuri B, et al. Vasoreactivity of isolated aortic rings from dyslipidemic and insulin resistant inducible nitric oxide synthase knockout mice. Eur J Pharmacol. 2019;855:90–97.
  • Yokoyama H, Emoto M, Fujiwara S, et al. Quantitative insulin sensitivity check index and the reciprocal index of homeostasis model assessment in normal range weight and moderately obese type 2 diabetic patients. Diabetes Care. 2003;26(8):2426–2432.
  • Kanuri BN, Kanshana JS, Rebello SC, et al. Altered glucose and lipid homeostasis in liver and adipose tissue pre-dispose inducible NOS knockout mice to insulin resistance. Sci Rep. 2017;7:41009.
  • Otsuka M, Kang YJ, Ren J, et al. Distinct effects of p38α deletion in myeloid lineage and gut epithelia in mouse models of inflammatory bowel disease. Gastroenterology. 2010;138(4):1255.
  • Kanshana JS, Rebello SC, Pathak P, et al. Standardized fraction of Xylocarpus moluccensis fruits improve vascular relaxation and plaque stability in dyslipidemic models of atherosclerosis. J Ethnopharmacol. 2018;213:81–91.
  • Aggarwal H, Pathak P, Kumar Y, et al. Modulation of insulin resistance, dyslipidemia and serum metabolome in iNOS knockout mice following treatment with nitrite, metformin, pioglitazone, and a combination of ampicillin and neomycin. Int J Mol Sci. 2022;23(1):195.
  • De Figueiredo ASP, Salmon AB, Bruno F, et al. Nox2 mediates skeletal muscle insulin resistance induced by a high fat diet. J Biol Chem. 2015;290(21):13427–13439.
  • Gao D, Nong S, Huang X, et al. The effects of palmitate on hepatic insulin resistance are mediated by NADPH oxidase 3-derived reactive oxygen species through JNK and p38 MAPK pathways. J Biol Chem. 2010;285(39):29965–29973.
  • Li N, Li B, Brun T, et al. NADPH oxidase NOX2 defines a new antagonistic role for reactive oxygen species and cAMP/PKA in the regulation of insulin secretion. Diabetes. 2012;61(11):2842–2850.
  • Al-Hamodi Z, Al-Habori M, Al-Meeri A, et al. Association of adipokines, leptin/adiponectin ratio and C-reactive protein with obesity and type 2 diabetes mellitus. Diabetol Metab Syndr. 2014;6(1):99–98.
  • Li G, Xu L, Zhao Y, et al. Leptin-adiponectin imbalance as a marker of metabolic syndrome among Chinese children and adolescents: the BCAMS study. PLOS One. 2017;12(10):e0186222.
  • López-Jaramillo P, Gómez-Arbeláez D, López-López J, et al. The role of leptin/adiponectin ratio in metabolic syndrome and diabetes. Horm Mol Biol Clin Investig. 2014;18(1):37–45.
  • Matziouridou C, Rocha SC, Haabeth OA, et al. iNOS- and NOX1-dependent ROS production maintains bacterial homeostasis in the ileum of mice. Mucosal Immunol. 2017;11:774–784.
  • Aggarwal H, Pathak P, Singh V, et al. Vancomycin-induced modulation of gram-positive gut bacteria and metabolites remediates insulin resistance in iNOS knockout mice. Front Cell Infect Microbiol. 2022;11:1439.
  • Aggarwal H, Kanuri BN, Dikshit M. Role of iNOS in insulin resistance and endothelial dysfunction. In: Chakraborti S, Dhalla NS, Ganguly NK, Dikshit M, editors. Oxidative stress in heart diseases. Singapore: Springer; 2019. p. 461–482.
  • Kanuri BN, Kanshana JS, Rebello SC, et al. Altered glucose and lipid homeostasis in liver and adipose tissue pre-dispose inducible NOS knockout mice to insulin resistance. Sci Rep. 2017;7:41009.
  • Yu F, Han W, Zhan G, et al. Abnormal gut microbiota composition contributes to the development of type 2 diabetes mellitus in db/db mice. Aging. 2019;11(22):10454–10467.
  • Ahmad R, Rah B, Bastola D, et al. Obesity-induces organ and tissue specific tight junction restructuring and barrier deregulation by claudin switching. Sci Rep. 2017;7(1):5125.
  • Ahmad R, Chaturvedi R, Olivares-Villagómez D, et al. Targeted colonic claudin-2 expression renders resistance to epithelial injury, induces immune suppression, and protects from colitis. Mucosal Immunol. 2014;7(6):1340–1353.
  • Dhawan P, Ahmad R, Chaturvedi R, et al. Claudin-2 expression increases tumorigenicity of colon cancer cells: role of epidermal growth factor receptor activation. Oncogene. 2011;30(29):3234–3247.
  • Isah MB, Masola B. Effect of oleanolic acid on small intestine morphology and enzymes of glutamine metabolism in diabetic rats. Int J Physiol Pathophysiol Pharmacol. 2017;9:128–136.
  • Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–1772.
  • Jädert C, Phillipson M, Holm L, et al. Preventive and therapeutic effects of nitrite supplementation in experimental inflammatory bowel disease. Redox Biol. 2013;2:73–81.
  • Urasaki Y, Pizzorno G, Le TT. Chronic uridine administration induces fatty liver and pre-diabetic conditions in mice. PLOS One. 2016;11(1):e0146994.
  • O’Kell AL, Garrett TJ, Wasserfall C, et al. Untargeted metabolomic analysis in naturally occurring canine diabetes mellitus identifies similarities to human type 1 diabetes. Sci Rep. 2017;7(1):1–7.
  • Calzadilla P, Gómez-Serrano M, García-Santos E, et al. N-acetylcysteine affects obesity-related protein expression in 3T3-L1 adipocytes. Redox Rep. 2013;18(6):210–218.
  • Novelli ELB, Santos PP, Assalin HB, et al. N-acetylcysteine in high-sucrose diet-induced obesity: energy expenditure and metabolic shifting for cardiac health. Pharmacol Res. 2009;59(1):74–79.
  • Dludla PV, Mazibuko-Mbeje SE, Nyambuya TM, et al. The beneficial effects of N-acetyl cysteine (NAC) against obesity associated complications: a systematic review of pre-clinical studies. Pharmacol Res. 2019;146:104332.
  • Hasanpour M, Iranshahy M, Iranshahi M. The application of metabolomics in investigating anti-diabetic activity of medicinal plants. Biomed Pharmacother. 2020;128:110263.
  • Cao H, Wiemerslage L, Marttila PSK, et al. Bis-(2-ethylhexyl) phthalate increases insulin expression and lipid levels in Drosophila melanogaster. Basic Clin Pharmacol Toxicol. 2016;119(3):309–316.
  • Zhao J, Ren S, Liu C, et al. Di-(2-ethylhexyl) phthalate increases obesity-induced damage to the male reproductive system in mice. Oxid Med Cell Longev. 2018;2018:1–12.
  • Lv Z, Cheng J, Huang S, et al. DEHP induces obesity and hypothyroidism through both central and peripheral pathways in C3H/He mice. Obesity. 2016;24(2):368–378.
  • Zhao Q, Zhang A, Zong W, et al. Exploring potential biomarkers and determining the metabolic mechanism of type 2 diabetes mellitus using liquid chromatography coupled to high-resolution mass spectrometry. RSC Adv. 2017;7(70):44186–44198.
  • Lee JM, Lee YK, Mamrosh JL, et al. A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects. Nature. 2011;474(7352):506–510.
  • Liu S, Brown JD, Stanya KJ, et al. A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use. Nature. 2013;502(7472):550–554.
  • Meikle PJ, Summers SA. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat Rev Endocrinol. 2017;13(2):79–91.
  • van der Veen JN, Kennelly JP, Wan S, et al. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta Biomembr. 2017;1859(9 Pt B):1558–1572.
  • Kayser BD, Lhomme M, Prifti E, et al. Phosphatidylglycerols are induced by gut dysbiosis and inflammation, and favorably modulate adipose tissue remodeling in obesity. FASEB J. 2019;33(4):4741–4754.
  • Dong F, Hao F, Murray IA, et al. Intestinal microbiota-derived tryptophan metabolites are predictive of Ah receptor activity. Gut Microbes. 2020;12(1):1–24.
  • Olofsson LE, Bäckhed F. The metabolic role and therapeutic potential of the microbiome. Endocr Rev. 2022;43(5):907–926.
  • Illés P, Krasulová K, Vyhlídalová B, et al. Indole microbial intestinal metabolites expand the repertoire of ligands and agonists of the human pregnane X receptor. Toxicol Lett. 2020;334:87–93.
  • Hung SC, Kuo KL, Wu CC, et al. Indoxyl sulfate: a novel cardiovascular risk factor in chronic kidney disease. J Am Heart Assoc. 2017;6:e005022.
  • Zhang L. A systematic review of metabolite profiling in diabetic nephropathy. J Endocrinol Diab. 2015;2(3):1–11.
  • Lees HJ, Swann JR, Wilson ID, et al. Hippurate: the natural history of a mammalian-microbial cometabolite. J Proteome Res. 2013;12(4):1527–1546.
  • Brial F, Chilloux J, Nielsen T, et al. Human and preclinical studies of the host–gut microbiome co-metabolite hippurate as a marker and mediator of metabolic health. Gut. 2021;70(11):2105–2114.
  • Naseri R, Navabi SJ, Samimi Z, et al. Targeting glycoproteins as a therapeutic strategy for diabetes mellitus and its complications. Daru. 2020;28(1):333–358.
  • Hodoniczky J, Morris CA, Rae AL. Oral and intestinal digestion of oligosaccharides as potential sweeteners: a systematic evaluation. Food Chem. 2012;132(4):1951–1958.
  • Liu G, Bei J, Liang L, et al. Stachyose improves inflammation through modulating gut microbiota of high-fat diet/streptozotocin-induced type 2 diabetes in rats. Mol Nutr Food Res. 2018;62(6):1700954.
  • Cao H, Li C-N, Lei L, et al. Stachyose improves the anti-diabetic effects of berberine by regulating intestinal microbiota and SCFAs in spontaneous type 2 diabetic KKAy mice; 2020.
  • Hira T, Yanagihara K, Koga T, et al. Impact of difructose anhydride III, raffinose, and fructooligosaccharides on energy intake, gut hormones, and cecal fermentation in rats fed a high-fat and high-sucrose diet. Biosci Biotechnol Biochem. 2017;81(11):2186–2194.
  • Sun W, Zhang D, Wang Z, et al. Insulin resistance is associated with total bile acid level in type 2 diabetic and nondiabetic population. Medicine. 2016;95(10):e2778.
  • Cariou B, Chetiveaux M, Zaïr Y, et al. Fasting plasma chenodeoxycholic acid and cholic acid concentrations are inversely correlated with insulin sensitivity in adults. Nutr Metab. 2011;8(1):48.
  • Huang CW, Chien YS, Chen YJ, et al. Role of n-3 polyunsaturated fatty acids in ameliorating the obesity-induced metabolic syndrome in animal models and humans. Int J Mol Sci. 2016;17:1689.
  • Le HD, Meisel JA, de Meijer VE, et al. The essentiality of arachidonic acid and docosahexaenoic acid. Prostaglandins Leukot Essent Fatty Acids. 2009;81(2–3):165–170.
  • Ohtake K, Nakano G, Ehara N, et al. Dietary nitrite supplementation improves insulin resistance in type 2 diabetic KKAy mice. Nitric Oxide. 2015;44:31–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.