126
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Iron deficiency aggravates DMNQ-induced cytotoxicity via redox cycling in kidney-derived cells

, , , &
Pages 544-554 | Received 05 Sep 2022, Accepted 29 Nov 2022, Published online: 16 Dec 2022

References

  • Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–1072.
  • Lopez A, Cacoub P, Macdougall IC, et al. Iron deficiency anaemia. Lancet. 2016;387(10021):907–916.
  • Gozzelino R, Arosio P. Iron homeostasis in health and disease. IJMS. 2016;17(1):130.
  • Busti F, Campostrini N, Martinelli N, et al. Iron deficiency in the elderly population, revisited in the hepcidin era. Front Pharmacol. 2014;5:83.
  • Chakrabarty P, Rudra S, Hossain MA, et al. Iron chelation therapy and thalassemia – an overview. Mymensingh Med J. 2011;20(3):513–519.
  • Kontoghiorghes GJ, Kontoghiorghe CN. Iron and chelation in biochemistry and medicine: new approaches to controlling iron metabolism and treating related diseases. Cells. 2020;9(6):1456.
  • Netz DJA, Stith CM, Stümpfig M, et al. Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol. 2011;8(1):125–132.
  • Toyokuni S. Iron overload as a major targetable pathogenesis of asbestos-induced mesothelial carcinogenesis. Redox Rep. 2014;19(1):1–7.
  • Yoon Y-S, Yoon D-S, Lim IK, et al. Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J Cell Physiol. 2006;209(2):468–480.
  • MartinSanchez D, Gallegos-Villalobos A, Fontecha-Barriuso M, et al. Deferasirox-induced iron depletion promotes BclxL downregulation and death of proximal tubular cells. Sci Rep. 2017;7:41510.
  • Kim JL, Lee D-H, Na YJ, et al. Iron chelator-induced apoptosis via the ER stress pathway in gastric cancer cells. Tumour Biol. 2016;37(7):9709–9719.
  • Inoue H, Hanawa N, Katsumata S-I, et al. Iron deficiency induces autophagy and activates Nrf2 signal through modulating p62/SQSTM. Biomed Res. 2017;38(6):343–350.
  • Hara Y, Yanatori I, Tanaka A, et al. Iron loss triggers mitophagy through induction of mitochondrial ferritin. EMBO Rep. 2020;21(11):e50202.
  • Koren G, Bentur Y, Strong D, et al. Acute changes in renal function associated with deferoxamine therapy. Am J Dis Child. 1989;143(9):1077–1080.
  • Cianciulli P, Sorrentino F, Forte L, et al. Acute renal failure occurring during intravenous desferrioxamine therapy: recovery after haemodialysis. Haematologica. 1992;77(6):514–515.
  • Cianciulli P, Sollecito D, Sorrentino F, et al. Early detection of nephrotoxic effects in thalassemic patients receiving desferrioxamine therapy. Kidney Int. 1994;46(2):467–470.
  • Szilagyi JT, Fussell KC, Wang Y, et al. Quinone and nitrofurantoin redox cycling by recombinant cytochrome b5 reductase. Toxicol Appl Pharmacol. 2018;359:102–107.
  • Wang Y, Hekimi S. The complexity of making ubiquinone. Trends Endocrinol Metab. 2019 Dec;30(12):929–943.
  • Pradhan N, Singh C, Singh A. Coenzyme Q10 a mitochondrial restorer for various brain disorders. Naunyn-Schmiedeberg’s Arch Pharmacol. 2021;394(11):2197–2222.
  • Klotz L-O, Hou X, Jacob C. 1,4-naphthoquinones: from oxidative damage to cellular and inter-cellular signaling. Molecules. 2014;19(9):14902–14918.
  • Reczek CR, Birsoy K, Kong H, et al. A CRISPR screen identifies a pathway required for paraquat-induced cell death. Nat Chem Biol. 2017;13(12):1274–1279.
  • Jan Y-H, Richardson JR, Baker AA, et al. Novel approaches to mitigating parathion toxicity: targeting cytochrome P450-mediated metabolism with menadione. Ann N Y Acad Sci. 2016;1378(1):80–86.
  • Ishihara Y, Shiba D, Shimamoto N. Enhancement of DMNQ-induced hepatocyte toxicity by cytochrome P450 inhibition. Toxicol Appl Pharmacol. 2006;214(2):109–117.
  • Ishihara Y, Tsuji K, Ishii S, et al. Contribution of reductase activity to quinone toxicity in three kinds of hepatic cells. Biol Pharm Bull. 2012;35(4):634–638.
  • Gray JP, Karandrea S, Burgos DZ, et al. NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) and cytochrome P450 oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells. Toxicol Lett. 2016;262:1–11.
  • Asano T, Komatsu M, Yamaguchi-Iwai Y, et al. Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells. Mol Cell Biol. 2011;31(10):2040–2052.
  • Xu M, Wang W, Frontera JR, et al. Ncb5or deficiency increases fatty acid catabolism and oxidative stress. J Biol Chem. 2011;286(13):11141–11154.
  • Gang G-T, Kim Y-H, Noh J-R, et al. Protective role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in cisplatin-induced nephrotoxicity. Toxicol Lett. 2013;221(3):165–175.
  • Ross D, Siegel D. Functions of NQO1 in cellular protection and CoQ 10 metabolism and its potential role as a redox sensitive molecular switch. Front Physiol. 2017;8:595.
  • Schlager JJ, Powis G. Cytosolic NAD(P)H:(quinone-acceptor) oxidoreductase in human normal and tumor tissue: effects of cigarette smoking and alcohol. Int J Cancer. 1990;45(3):403–409.
  • Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal. 2008;10(2):179–206.
  • Oexle H, Gnaiger E, Weiss G. Iron-dependent changes in cellular energy metabolism: influence on citric acid cycle and oxidative phosphorylation. Biochim Biophys Acta. 1999;1413(3):99–107.
  • Pantopoulos K, Hentze MW. Rapid responses to oxidative stress mediated by iron regulatory protein. Embo J. 1995;14(12):2917–2924.
  • Ebert BL, Gleadle JM, O'Rourke JF, et al. Isoenzyme-specific regulation of genes involved in energy metabolism by hypoxia: similarities with the regulation of erythropoietin. Biochem J. 1996;313(3):809–814.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.