170
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Non-thermal plasma elicits ferrous chloride-catalyzed DMPO-OH

, , , ORCID Icon & ORCID Icon
Pages 595-606 | Received 28 Nov 2022, Accepted 06 Dec 2022, Published online: 15 Dec 2022

References

  • Toyokuni S, Ikehara Y, Kikkawa F, et al. Plasma medical science. London: Academic Press; 2018. p. 438.
  • Privat-Maldonado A, Schmidt A, Lin A, et al. ROS from physical plasmas: redox chemistry for biomedical therapy. Oxid Med Cell Longev. 2019;2019:9062098.
  • Tanaka H, Mizuno M, Ishikawa K, et al. Molecular mechanisms of non-thermal plasma-induced effects in cancer cells. Biol Chem. 2018;400(1):87–91.
  • Yan D, Sherman JH, Keidar M. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget. 2017;8(9):15977–15995.
  • Yan D, Nourmohammadi N, Bian K, et al. Stabilizing the cold plasma-stimulated medium by regulating medium’s composition. Sci Rep. 2016;6:26016.
  • Jiang L, Zheng H, Lyu Q, et al. Lysosomal nitric oxide determines transition from autophagy to ferroptosis after exposure to plasma-activated ringer’s lactate. Redox Biol. 2021;43:101989.
  • Tanaka H, Bekeschus S, Yan D, et al. Plasma-treated solutions (PTS) in cancer therapy. Cancers. 2021;13(7):1737.
  • Tanaka H, Hosoi Y, Ishikawa K, et al. Low temperature plasma irradiation products of sodium lactate solution that induce cell death on U251SP glioblastoma cells were identified. Sci Rep. 2021;11(1):18488.
  • Bernhardt T, Semmler ML, Schafer M, et al. Plasma medicine: applications of cold atmospheric pressure plasma in dermatology. Oxid Med Cell Longev. 2019;2019:3873928.
  • Harley JC, Suchowerska N, McKenzie DR. Cancer treatment with gas plasma and with gas plasma-activated liquid: positives, potentials and problems of clinical translation. Biophys Rev. 2020;12(4):989–1006.
  • Sies H, Belousov VV, Chandel NS, et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol. 2022;23(7):499–515.
  • Toyokuni S. The origin and future of oxidative stress pathology: from the recognition of carcinogenesis as an iron addiction with ferroptosis-resistance to non-thermal plasma therapy. Pathol Int. 2016;66(5):245–259.
  • Utsumi F, Kajiyama H, Nakamura K, et al. Effect of indirect nonequilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo. PLOS One. 2013;8(12):e81576.
  • Okazaki Y, Wang Y, Tanaka H, et al. Direct exposure of non-equilibrium atmospheric pressure plasma confers simultaneous oxidative and ultraviolet modifications in biomolecules. J Clin Biochem Nutr. 2014;55(3):207–215.
  • Okazaki Y, Sasaki K, Ito N, et al. Tetrachloroaurate (III)-induced oxidation increases non-thermal plasma-induced oxidative stress. Free Radic Res. 2022;56(1):17–27.
  • Shi L, Ito F, Wang Y, et al. Non-thermal plasma induces a stress response in mesothelioma cells resulting in increased endocytosis, lysosome biogenesis and autophagy. Free Radic Biol Med. 2017;108:904–917.
  • Shi L, Wang Y, Ito F, et al. Biphasic effects of l-ascorbate on the tumoricidal activity of non-thermal plasma against malignant mesothelioma cells. Arch Biochem Biophys. 2016;605:109–116.
  • Sato K, Shi L, Ito F, et al. Non-thermal plasma specifically kills oral squamous cell carcinoma cells in a catalytic Fe(II)-dependent manner. J Clin Biochem Nutr. 2019;65(1):8–15.
  • Adachi T, Nonomura S, Horiba M, et al. Iron stimulates plasma-activated medium-induced A549 cell injury. Sci Rep. 2016;6:20928.
  • Okazaki Y, Ishidzu Y, Ito F, et al. L-dehydroascorbate efficiently degrades non-thermal plasma-induced hydrogen peroxide. Arch Biochem Biophys. 2021;700:108762.
  • Okazaki Y, Tanaka H, Hori M, et al. L-dehydroascorbic acid recycled by thiols efficiently scavenges non-thermal plasma-induced hydroxyl radicals. Arch Biochem Biophys. 2019;669:87–95.
  • Okazaki Y, Tanaka H, Matsumoto KI, et al. Non-thermal plasma-induced DMPO-OH yields hydrogen peroxide. Arch Biochem Biophys. 2021;705:108901.
  • Matsumoto K, Ueno M, Nakanishi I, et al. Density of hydroxyl radicals generated in an aqueous solution by irradiating carbon-ion beam. Chem Pharm Bull. 2015;63(3):195–199.
  • Kakhlon O, Cabantchik ZI. The labile iron Pool: characterization, measurement, and participation in cellular processes. Free Radic Biol Med. 2002;33(8):1037–1046.
  • Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Croydon: Oxford University Press; 2015.
  • Makino K, Mossoba MM, Riesz P. Chemical effects of ultrasound on aqueous-solutions – formation of hydroxyl radicals and hydrogen-atoms. J Phys Chem. 1983;87(8):1369–1377.
  • Moritake T, Tsuboi K, Anzai K, et al. ESR spin trapping of hydroxyl radicals in aqueous solution irradiated with high-LET carbon-ion beams. Radiat Res. 2003;159(5):670–675.
  • Nishi M, Hagi A, Ide H, et al. Comparison of 2,5,5-trimethyl-1-pyrroline-N-oxide (M3PO) and 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as spin traps. Biochem Int. 1992;27(4):651–659.
  • Reinke LA, Rau JM, McCay PB. Characteristics of an oxidant formed during iron (II) autoxidation. Free Radic Biol Med. 1994;16(4):485–492.
  • Yamazaki I, Piette LH. ESR spin-trapping studies on the reaction of Fe2+ ions with H2O2-reactive species in oxygen toxicity in biology. J Biol Chem. 1990;265(23):13589–13594.
  • Lloyd RV, Hanna PM, Mason RP. The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Radic Biol Med. 1997;22(5):885–888.
  • Halliwell B, Gutteridge JM. Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett. 1992;307(1):108–112.
  • Rachmilovich-Calis S, Masarwa A, Meyerstein N, et al. The Fenton reaction in aerated aqueous solutions revisited. Eur J Inorg Chem. 2005;2005(14):2875–2880.
  • Koppenol WH, Hider RH. Iron and redox cycling. Do’s and don’ts. Free Radic Biol Med. 2019;133:3–10.
  • Enami S, Sakamoto Y, Colussi AJ. Fenton chemistry at aqueous interfaces. Proc Natl Acad Sci USA. 2014;111(2):623–628.
  • Deguillaume L, Leriche M, Chaumerliac N. Impact of radical versus non-radical pathway in the Fenton chemistry on the iron redox cycle in clouds. Chemosphere. 2005;60(5):718–724.
  • Rush JD, Koppenol WH. Oxidizing intermediates in the reaction of ferrous EDTA with hydrogen peroxide. Reactions with organic molecules and ferrocytochrome c. J Biol Chem. 1986;261(15):6730–6733.
  • Burkitt MJ. ESR spin trapping studies into the nature of the oxidizing species formed in the Fenton reaction: pitfalls associated with the use of 5,5-dimethyl-1-pyrroline-N-oxide in the detection of the hydroxyl radical. Free Radic Res Commun. 1993;18(1):43–57.
  • Yamazaki I, Piette LH. EPR spin-trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen-peroxide. J Am Chem Soc. 1991;113(20):7588–7593.
  • Makino K, Hagiwara T, Hagi A, et al. Cautionary note for DMPO spin trapping in the presence of iron ion. Biochem Biophys Res Commun. 1990;172(3):1073–1080.
  • Hanna PM, Chamulitrat W, Mason RP. When are metal ion-dependent hydroxyl and alkoxyl radical adducts of 5,5-dimethyl-1-pyrroline N-oxide artifacts? Arch Biochem Biophys. 1992;296(2):640–644.
  • Leinisch F, Jiang J, DeRose EF, et al. Investigation of spin-trapping artifacts formed by the Forrester-Hepburn mechanism. Free Radic Biol Med. 2013;65:1497–1505.
  • Beltran FJ, Rivas FJ, Montero-de-Espinosa R. Iron type catalysts for the ozonation of oxalic acid in water. Water Res. 2005;39(15):3553–3564.
  • Tada M, Kohno M, Kasai S, et al. Generation mechanism of radical species by tyrosine-tyrosinase reaction. J Clin Biochem Nutr. 2010;47(2):162–166.
  • Ito S, Ikuta K, Kato D, et al. Non-transferrin-bound iron assay system utilizing a conventional automated analyzer. Clin Chim Acta. 2014;437:129–135.
  • Okazaki Y. Asbestos-induced mesothelial injury and carcinogenesis: involvement of iron and reactive oxygen species. Pathol Int. 2022;72(2):83–95.
  • Okazaki Y. The role of ferric nitrilotriacetate in renal carcinogenesis and cell death: from animal models to clinical implications. Cancers. 2022;14(6):1495.
  • Badu-Boateng C, Naftalin RJ. Ascorbate and ferritin interactions: consequences for iron release in vitro and in vivo and implications for inflammation. Free Radic Biol Med. 2019;133:75–87.
  • Furuta T, Shi L, Toyokuni S. Non-thermal plasma as a simple ferroptosis inducer in cancer cells: a possible role of ferritin. Pathol Int. 2018;68(7):442–443.
  • Klinkhammer C, Verlackt C, Śmiłowicz D, et al. Elucidation of plasma-induced chemical modifications on glutathione and glutathione disulphide. Sci Rep. 2017;7(1):13828.
  • Śmiłowicz D, Kogelheide F, Stapelmann K, et al. Study on chemical modifications of glutathione by cold atmospheric pressure plasma (CAP) operated in air in the presence of Fe(II) and Fe(III) complexes. Sci Rep. 2019;9(1):18024.
  • Giamalva D, Church DF, Pryor WA. A comparison of the rates of ozonation of biological antioxidants and oleate and linoleate esters. Biochem Biophys Res Commun. 1985;133(2):773–779.
  • Kanofsky JR, Sima PD. Reactive absorption of ozone by aqueous biomolecule solutions: implications for the role of sulfhydryl compounds as targets for ozone. Arch Biochem Biophys. 1995;316(1):52–62.
  • Spear N, Aust SD. Thiol-mediated NTA-Fe(III) reduction and lipid peroxidation. Arch Biochem Biophys. 1994;312(1):198–202.
  • Ke Z, Huang Q. Haem-assisted dityrosine-cross-linking of fibrinogen under non-thermal plasma exposure: one important mechanism of facilitated blood coagulation. Sci Rep. 2016;6:26982.
  • Śmiłowicz D, Kogelheide F, Schöne AL, et al. Catalytic oxidation of small organic molecules by cold plasma in solution in the presence of molecular iron complexes. Sci Rep. 2020;10(1):21652.
  • Pelalak R, Heidari Z, Forouzesh M, et al. High performance ozone based advanced oxidation processes catalyzed with novel argon plasma treated iron oxyhydroxide hydrate for phenazopyridine degradation. Sci Rep. 2021;11(1):964.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.