148
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

The microbiota catabolites of quercetin glycosides concertedly enhance the resistance against acetaldehyde-induced oxidative stress

, , , , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 607-616 | Received 26 Oct 2022, Accepted 13 Dec 2022, Published online: 03 Jan 2023

References

  • Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol. 2008;585(2–3):325–337.
  • Olthof MR, Hollman PC, Vree TB, et al. Bioavailabilities of quercetin-3-glucoside and quercetin-4′-glucoside do not differ in humans. J Nutr. 2000;130(5):1200–1203.
  • Murota K, Mitsukuni Y, Ichikawa M, et al. Quercetin-4 ‘-glucoside is more potent than quercetin-3-glucoside in protection of rat intestinal mucosa homogenates against iron ion-induced lipid peroxidation. J Agric Food Chem. 2004;52(7):1907–1912.
  • Mullen W, Rouanet JM, Auger C, et al. Bioavailability of [2-14C]quercetin-4′-glucoside in rats. J Agric Food Chem. 2008;56(24):12127–12137.
  • Crozier A, Jaganath IB, Clifford MN. Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep. 2009;26(8):1001–1043.
  • Halliwell B, Rafter J, Jenner A. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not? Am J Clin Nutr. 2005;81(1 Suppl):268S–276S.
  • Aura AM, O'leary K, Williamson G, et al. Quercetin derivatives are deconjugated and converted to hydroxyphenylacetic acids but not methylated by human fecal flora in vitro. J Agric Food Chem. 2002;50(6):1725–1730.
  • Yang J, Guo J, Yuan J. In vitro antioxidant properties of rutin. LWT-Food Sci Technol. 2008;41(6):1060–1066.
  • Appeldoorn MM, Vincken JP, Aura AM, et al. Procyanidin dimers are metabolized by human microbiota with 2-(3, 4-dihydroxyphenyl) acetic acid and 5-(3, 4-dihydroxyphenyl)-γ-valerolactone as the major metabolites. J Agric Food Chem. 2009;57(3):1084–1092.
  • Gonon F, Buda M, Cespuglio R, et al. In vivo electrochemical detection of catechols in the neostriatum of anaesthetized rats: dopamine or DOPAC? Nature. 1980;286(5776):902–904.
  • Lieber CS. Metabolic effects of acetaldehyde. Biochem Soc Trans. 1988;16(3):241–247.
  • Eriksson CP. The role of acetaldehyde in the actions of alcohol (update 2000). Alcohol Clin Exp Res. 2001;25(5 Suppl ISBRA):15S–32S.
  • Hasumura Y, Teschke R, Lieber C. Hepatic microsomal ethanol-oxidizing system (MEOS): dissociation from reduced nicotinamide adenine dinucleotide phosphate oxidase and possible role of form I of cytochrome P-450. J Pharmacol Exp Ther. 1975;194(2):469–474.
  • Espina N, Lima V, Lieber CS, et al. In vitro and in vivo inhibitory effect of ethanol and acetaldehyde on O6-methylguanine transferase. Carcinogenesis. 1988;9(5):761–766.
  • Lieber C, Baraona E, Hernandez-Munoz R, et al. Impaired oxygen utilization. A new mechanism for the hepatotoxicity of ethanol in sub-human primates. J Clin Invest. 1989;83(5):1682–1690.
  • Liu Y, Kurita A, Nakashima S, et al. 3, 4-Dihydroxyphenylacetic acid is a potential aldehyde dehydrogenase inducer in murine hepatoma Hepa1c1c7 cells. Biosci Biotechnol Biochem. 2017;81(10):1978–1983.
  • Liu Y, Myojin T, Li K, et al. A major intestinal catabolite of quercetin glycosides, 3-hydroxyphenylacetic acid, protects the hepatocytes from the acetaldehyde-induced cytotoxicity through the enhancement of the total aldehyde dehydrogenase activity. IJMS. 2022;23(3):1762.
  • Tang Y, Nakashima S, Saiki S, et al. 3, 4-Dihydroxyphenylacetic acid is a predominant biologically-active catabolite of quercetin glycosides. Food Res Int. 2016;89(Pt 1):716–723.
  • Rosenkranz AR, Schmaldienst S, Stuhlmeier KM, et al. A microplate assay for the detection of oxidative products using 2′, 7′-dichlorofluorescin-diacetate. J Immunol Methods. 1992;156(1):39–45.
  • Baker MA, Cerniglia GJ, Zaman A. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem. 1990;190(2):360–365.
  • Moreb JS, Maccow C, Schweder M, et al. Expression of antisense RNA to aldehyde dehydrogenase class-1 sensitizes tumor cells to 4-hydroperoxycyclophosphamide in vitro. J Pharmacol Exp Ther. 2000;293(2):390–396.
  • Chen CH, Cruz LA, Mochly-Rosen D. Pharmacological recruitment of aldehyde dehydrogenase 3A1 (ALDH3A1) to assist ALDH2 in acetaldehyde and ethanol metabolism in vivo. Proc Natl Acad Sci USA. 2015;112(10):3074–3079.
  • Lind PA, Eriksson C, Wilhelmsen KC. The role of aldehyde dehydrogenase-1 (ALDH1A1) polymorphisms in harmful alcohol consumption in a Finnish population. Hum Genom. 2008;3(1):1–12.
  • Nakamura Y, Miyoshi N. Electrophiles in foods: the current status of isothiocyanates and their chemical biology. Biosci Biotechnol Biochem. 2010;74(2):242–255.
  • Gomez-Quiroz L, Bucio L, Souza V, et al. Interleukin 8 response and oxidative stress in HepG2 cells treated with ethanol, acetaldehyde or lipopolysaccharide. Hepatol Res. 2003;26(2):134–141.
  • Farfán Labonne BE, Gutiérrez M, Gómez-Quiroz LE, et al. Acetaldehyde-induced mitochondrial dysfunction sensitizes hepatocytes to oxidative damage. Cell Biol Toxicol. 2009;25(6):599–609.
  • Dias P, Pourová J, Vopršalová M, et al. 3-Hydroxyphenylacetic acid: a blood Pressure-Reducing flavonoid metabolite. Nutrients. 2022;14(2):328.
  • Li X, Wang X, Chen D, et al. Antioxidant activity and mechanism of protocatechuic acid in vitro. FFHD. 2011;1(7):232–244.
  • Jamal M, Ameno K, Tanaka N, et al. Ethanol and acetaldehyde after intraperitoneal administration to Aldh2-knockout mice-reflection in blood and brain levels. Neurochem Res. 2016;41(5):1029–1034.
  • Yu HS, Oyama T, Isse T, et al. Characteristics of aldehyde dehydrogenase 2 (Aldh2) knockout mice. Toxicol Mech Methods. 2009;19(9):535–540.
  • Lu SC. Glutathione synthesis. Biochim Biophys Acta. 2013;1830(5):3143–3153.
  • Aldini G, Altomare A, Baron G, et al. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res. 2018;52(7):751–762.
  • Omidi M, Ghafarian‐Bahraman A, Mohammadi‐Bardbori A. GSH/GSSG redox couple plays central role in aryl hydrocarbon receptor‐dependent modulation of cytochrome P450 1A1. J Biochem Mol Toxicol. 2018;32(7):e22164.
  • Pappas P, Vasiliou V, Karageorgou M, et al. Studies on the induction of rat class 3 aldehyde dehydrogenase. Boston (MA): Springer; 1995. Chapter 5, Enzymology and molecular biology of carbonyl metabolism; p. 143–149.
  • Koli R, Erlund I, Jula A, et al. Bioavailability of various polyphenols from a diet containing moderate amounts of berries. J Agric Food Chem. 2010;58(7):3927–3932.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.