198
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Transferrin-mediated increase of labile iron Pool following simulated ischemia causes lipid peroxidation during the early phase of reperfusion

ORCID Icon, ORCID Icon & ORCID Icon
Pages 713-729 | Received 20 Jul 2022, Accepted 12 Jan 2023, Published online: 15 Feb 2023

References

  • Bou-Abdallah F, Paliakkara JJ, Melman G, et al. Reductive Mobilization of iron from intact ferritin: mechanisms and physiological implication. Pharmaceuticals. 2018;11(4):120.
  • Britton RS, Leicester KL, Bacon BR. Iron Toxicity and chelation therapy. Int J Hematol. 2002;76(3):219–228.
  • Paterek A, Mackiewicz U, Mączewski M. Iron and the heart: a paradigm shift from systemic to cardiomyocyte abnormalities. J Cell Physiol. 2019;234(12):21613–21629.
  • Winterbourn CC. Toxicity of iron and hydrogen peroxide: the fenton reaction. Toxicol Lett. 1995;82-83:969–974.
  • Komara JS, Nayini NR, Bialick HA, et al. Brain iron delocalization and lipid peroxidation following cardiac arrest. Ann Emerg Med. 1986;15(4):384–389.
  • Fang X, Wang H, Han D, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A. 2019;116(7):2672–2680.
  • Dixon SJ, Stockwell BR. The Hallmarks of ferroptosis. Annu Rev Cancer Biol. 2019;3(1):35–54.
  • Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85.
  • Dev S, Babitt JL. Overview of iron metabolism in health and disease. Hemodial Int. 2017;21(Suppl 1):s6–s20.
  • Fontecave M, Pierre JL. Iron metabolism: the low-molecular-mass iron Pool. Biol Metals. 1991;4(3):133–135.
  • Mulligan M, Althaus B, Linder MC. Non-ferritin, non-heme iron pools in rat tissues. Int J Biochem. 1986;18(9):791–798.
  • Voogd A, Sluiter W, van Eijk HG, et al. Low molecular weight iron and the oxygen paradox in isolated rat hearts. J Clin Invest. 1992;90(5):2050–2055.
  • Zhao G, Ayene IS, Fisher AB. Role of iron in ischemia-reperfusion oxidative injury of rat lungs. Am J Respir Cell Mol Biol. 1997;16(3):293–299.
  • Holt S, Gunderson M, Joyce K, et al. Myocardial tissue iron delocalization and evidence for lipid peroxidation after two hours of ischemia. Ann Emerg Med. 1986;15(10):1155–1159.
  • van der Kraaij AM, Mostert LJ, van Eijk HG, et al. Iron-load increases the susceptibility of rat hearts to oxygen reperfusion damage. Protection by the antioxidant (+)-cyanidanol-3 and deferoxamine. Circulation. 1988;78(2):442–449.
  • Chan W, Taylor AJ, Ellims AH, et al. Effect of iron chelation on myocardial infarct size and oxidative stress in ST-elevation-myocardial infarction. Circ Cardiovasc Interv. 2012;5(2):270–278.
  • Baliga R, Ueda N, Shah SV. Increase in bleomycin-detectable iron in ischaemia/reperfusion injury to rat kidneys. Biochem J. 1993;291 (Pt 3):901–905.
  • Son E, Lee D, Woo CW, et al. The optimal model of reperfusion injury in vitro using H9c2 transformed cardiac myoblasts. Korean J Physiol Pharmacol. 2020;24(2):173–183.
  • Appleton SD, Chretien ML, McLaughlin BE, et al. Selective inhibition of heme oxygenase, without inhibition of nitric oxide synthase or soluble guanylyl cyclase, by metalloporphyrins at low concentrations. Drug Metab Dispos. 1999;27(10):1214–1219.
  • Chen D, Jin Z, Zhang J, et al. Y. HO-1 protects against hypoxia/Reoxygenation-Induced mitochondrial dysfunction in H9c2 cardiomyocytes. PLoS ONE. 2016;11(5):e0153587.
  • Byrne SL, Buckett PD, Kim J, et al. Ferristatin II promotes degradation of transferrin receptor-1 in vitro and in vivo. PLoS One. 2013;8(7):e70199.
  • Page MA, Baker E, Morgan EH. Transferrin and iron uptake by rat hepatocytes in culture. Am J Physiol. 1984;246(1 Pt 1): g26–33.
  • Yamaji Y, Nakazato Y, Oshima N, et al. Oxidative stress induced by iron released from transferrin in low pH peritoneal dialysis solution. Nephrol Dial Transplant. 2004;19(10):2592–2597.
  • Grahm G, Bates GW. Approaches to the standardization of serum unsaturated iron-binding capacity. J Lab Clin Med. 1976;88:477–486.
  • Pollack S, Vanderhoff G, Lasky F. Iron removal from transferrin. An experimental study. Biochim Biophys Acta. 1977;497(2):481–487.
  • Gabbe EE, Heinrich HC, Ičagić F. Proposal for the standardization of the serum unsaturated iron binding capacity assay, and results in groups of subjects with normal iron stores and with prelatent, latent, and manifest iron deficiency. Clin Chim Acta. 1982;119(1-2):51–63.
  • Jenkitkasemwong S, Wang C-Y, Knutson MD. Measurement of transferrin- and non-transferrin-bound iron uptake by mouse tissues. Bio-protocol. 2016;6(17):e1922.
  • Cabantchik ZI, Glickstein H, Milgram P, et al. A fluorescence assay for assessing chelation of intracellular iron in a membrane model system and in mammalian cells. Anal Biochem. 1996;233(2):221–227.
  • Drummen GP, van Liebergen LC, Op den Kamp JA, et al. C11-BODIPY(581/591), an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radic Biol Med. 2002;33(4):473–490.
  • Rebouche CJ, Wilcox CL, Widness JA. Microanalysis of non-heme iron in animal tissues. J Biochem Biophys Methods. 2004;58(3):239–251.
  • Rainey NE, Moustapha A, Saric A, et al. Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation. Cell Death Discov. 2019;5(1):150.
  • Khechaduri A, Bayeva M, Chang HC, et al. Heme levels are increased in human failing hearts. J Am Coll Cardiol. 2013;61(18):1884–1893.
  • Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–1072.
  • Gao M, Monian P, Quadri N, et al. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 2015;59(2):298–308.
  • Feng H, Stockwell BR. Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol. 2018;16(5):e2006203-e2006203.
  • Lakhal-Littleton S. Mechanisms of cardiac iron homeostasis and their importance to heart function. Free Radic Biol Med. 2019;133:234–237.
  • Hou W, Xie Y, Song X, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12(8):1425–1428.
  • Luo G, Jian Z, Zhu Y, et al. Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress. Int J Mol Med. 2019;43(5):2033–2043.
  • Dai S, Xu Q, Liu S, et al. Role of autophagy and its signaling pathways in ischemia/reperfusion injury. Am J Transl Res. 2017;9(10):4470–4480.
  • Matsui Y, Takagi H, Qu X, et al. Distinct Roles of autophagy in the heart during ischemia and reperfusion. Circ Res. 2007;100(6):914–922.
  • Gao M, Monian P, Pan Q, et al. Ferroptosis is an autophagic cell death process. Cell Res. 2016;26(9):1021–1032.
  • Lee PJ, Jiang BH, Chin BY, et al. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem. 1997;272(9):5375–5381.
  • Sheftel AD, Kim SF, Ponka P. Non-heme induction of heme oxygenase-1 does not alter cellular iron metabolism. J Biol Chem. 2007;282(14):10480–10486.
  • Tacchini L, Bianchi L, Bernelli-Zazzera A, et al. Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J Biol Chem. 1999;274(34):24142–24146.
  • Chepelev NL, Willmore WG. Regulation of iron pathways in response to hypoxia. Free Radic Biol Med. 2011;50(6):645–666.
  • Page MA, Baker E, Morgan EH. Transferrin and iron uptake by rat hepatocytes in culture. Am J Physiol Gastrointest Liver Physiol. 1984;246:G26–G33.
  • Ali SS, Noordin L, Bakar RA, et al. Current Updates on potential role of flavonoids in hypoxia/reoxygenation cardiac injury model. Cardiovasc Toxicol. 2021;21(8):605–618.
  • Meyron-Holtz EG, Ghosh MC, Rouault TA. Mammalian Tissue oxygen levels modulate Iron-Regulatory protein activities in vivo. Science. 2004;306(5704):2087–2090.
  • Bralet J, Schreiber L, Bouvier C. Effect of acidosis and anoxia on iron delocalization from brain homogenates. Biochem Pharmacol. 1992;43(5):979–983.
  • Braughler JM, Duncan LA, Chase RL. The involvement of iron in lipid peroxidation. Importance of ferric to ferrous ratios in initiation. J Biol Chem. 1986;261(22):10282–10289.
  • Khan S, O'Brien PJ. Modulating hypoxia-induced hepatocyte injury by affecting intracellular redox state. Biochim Biophys Acta. 1995;1269(2):153–161.
  • Yager JY, Brucklacher RM, Vannucci RC. Cerebral oxidative metabolism and redox state during hypoxia-ischemia and early recovery in immature rats. Am J Physiol. 1991;261(4 Pt 2):H1102–1108.
  • Topham R, Goger M, Pearce K, et al. The mobilization of ferritin iron by liver cytosol. A comparison of xanthine and NADH as reducing substrates. Biochem J. 1989;261(1):137–143.
  • Melman G, Bou-Abdallah F, Vane E, et al. Iron release from ferritin by flavin nucleotides. Biochim Biophys Acta. 2013;1830(10):4669–4674.
  • Presley JF, Mayor S, McGraw TE, et al. Bafilomycin A1 treatment retards transferrin receptor recycling more than bulk membrane recycling. J Biol Chem. 1997;272(21):13929–13936.
  • Ponka P, Lok CN. The transferrin receptor: role in health and disease. Int J Biochem Cell Biol. 1999;31(10):1111–1137.
  • Barañano DE, Rao M, Ferris CD, et al. Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci USA. 2002;99(25):16093–16098.
  • Suttner DM, Sridhar K, Lee CS, et al. Protective effects of transient HO-1 overexpression on susceptibility to oxygen toxicity in lung cells. Am J Physiol. 1999;276(3):L443–451.
  • Kwon M-Y, Park E, Lee S-J, et al. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget. 2015;6(27):24393–24403.
  • Tacchini L, Fusar Poli D, Bernelli-Zazzera A, et al. Transferrin receptor gene expression and transferrin-bound iron uptake are increased during postischemic rat liver reperfusion. Hepatology. 2002;36(1):103–111.
  • DeGregorio-Rocasolano N, Martí-Sistac O, Ponce J, et al. Iron-loaded transferrin (Tf) is detrimental whereas iron-free Tf confers protection against brain ischemia by modifying blood Tf saturation and subsequent neuronal damage. Redox Biol. 2018;15:143–158.
  • Yang GZ, Xue FS, Liu YY, et al. Feasibility Analysis of Oxygen-Glucose Deprivation-Nutrition resumption on H9c2 cells in vitro models of myocardial Ischemia-Reperfusion injury. Chin Med J (Engl). 2018;131(19):2277–2286.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.