194
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Guaiacol oxidation: theoretical insight into thermochemistry of radical processes involving methoxy group demethylation

, &
Pages 730-739 | Received 16 Nov 2022, Accepted 17 Jan 2023, Published online: 26 Jan 2023

References

  • Nowakowska M, Herbinet O, Dufour A, et al. Kinetic study of the pyrolysis and oxidation of guaiacol. J Phys Chem A. 2018;122(39):7894–7909.
  • Kroflič A, Anders J, Drventić I, et al. Guaiacol nitration in a simulated atmospheric aerosol with an emphasis on atmospheric nitrophenol formation mechanisms. ACS Earth Space Chem. 2021;5(5):1083–1093.
  • Dorrestijn E, Mulder P. The radical-induced decomposition of 2-methoxyphenol. J Chem Soc Perkin Trans 2. 1999;4(4):777–780.
  • Yee LD, Kautzman KE, Loza CL, et al. Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols. Atmos Chem Phys. 2013;13(16):8019–8043.
  • Nguyen TT, Mai TV-T, Huynh LK. Detailed kinetic modeling of thermal decomposition of guaiacol – a model compound for biomass lignin. Biomass Bioenergy. 2018;112:45–60.
  • Yang L, Zhou W, Seshan K, et al. Green and efficient synthesis route of catechol from guaiacol. J Mol Catal A Chem. 2013;368–369:61–65.
  • Gandhi M, Rajagopal D, Kumar AS. Facile electrochemical demethylation of 2-methoxyphenol to surface-confined catechol on the MWCNT and its efficient electrocatalytic hydrazine oxidation and sensing applications. ACS Omega. 2020;5(26):16208–16219.
  • Shao D, Chu W, Li X, et al. Electrochemical oxidation of guaiacol to increase its biodegradability or just remove COD in terms of anodes and electrolytes. RSC Adv. 2016;6(6):4858–4866.
  • Mallinson SJB, Machovina MM, Silveira RL, et al. A promiscuous cytochrome P450 aromatic O-demethylase for lignin bioconversion. Nat Commun. 2018;9(1):2487.
  • García-Hidalgo J, Ravi K, Kuré L-L, et al. Identification of the two-component guaiacol demethylase system from Rhodococcus rhodochrous and expression in Pseudomonas putida EM42 for guaiacol assimilation. AMB Express. 2019;9(1):34.
  • Andargie M, Vinas M, Rathgeb A, et al. Lignans of sesame (Sesamum indicum L.): a comprehensive review. Molecules. 2021;26(4):883.
  • Anders MW, Sunram JM, Wilkinson CF. Mechanism of the metabolism of 1,3-benzodioxoles to carbon monoxide. Biochem Pharmacol. 1984;33(4):577–580.
  • Du T, Quina FH, Tunega D, et al. Theoretical O–CH3 bond dissociation enthalpies of selected aromatic and non-aromatic molecules. Theor Chem Acc. 2020;139(4):75.
  • Samet Y, Wali I, Abdelhédi R. Kinetic degradation of the pollutant guaiacol by dark Fenton and solar photo-Fenton processes. Environ Sci Pollut Res Int. 2011;18(9):1497–1507.
  • Salas-Reyes M, Hernández J, Domínguez Z, et al. Electrochemical oxidation of caffeic and ferulic acid derivatives in aprotic medium. J Braz Chem Soc. 2011;22(4):693–701.
  • Hotta H, Nagano S, Ueda M, et al. Higher radical scavenging activities of polyphenolic antioxidants can be ascribed to chemical reactions following their oxidation. Biochim Biophys Acta. 2002;1572(1):123–132.
  • Amić A, Marković Z, Dimitrić Marković JM, et al. The role of guaiacyl moiety in free radical scavenging by 3,5-dihydroxy-4-methoxybenzyl alcohol: thermodynamics of 3H+/3e− mechanisms. Mol Phys. 2019;117(2):207–217.
  • Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 1995;28(1):25–30.
  • Ordoudi SA, Tsimidou MZ, Vafiadis AP, et al. Structure − DPPH• scavenging activity relationships: parallel study of catechol and guaiacol acid derivatives. J Agric Food Chem. 2006;54(16):5763–5768.
  • Dizhbite T, Telysheva G, Jurkjane V, et al. Characterization of the radical scavenging activity of lignins – natural antioxidants. Bioresour Technol. 2004;95(3):309–317.
  • Foti MC, Daquino C, Geraci C. Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH• radical in alcoholic solutions. J Org Chem. 2004;69(7):2309–2314.
  • Platzer M, Kiese S, Herfellner T, et al. Common trends and differences in antioxidant activity analysis of phenolic substances using single electron transfer based assays. Molecules. 2021;26(5):1244.
  • Biela M, Kleinová A, Klein E. Phenolic acids and their carboxylate anions: thermodynamics of primary antioxidant action. Phytochemistry. 2022;200:113254.
  • Foti MC. Antioxidant properties of phenols. J Pharm Pharmacol. 2007;59(12):1673–1685.
  • Lucarini M, Pedulli GF. Free radical intermediates in the inhibition of the autoxidation reaction. Chem Soc Rev. 2010;39(6):2106–2119.
  • Nenadis N, Sigalas MP. A DFT study on the radical scavenging activity of maritimetin and related aurones. J Phys Chem A. 2008;112(47):12196–12202.
  • Kozlowski D, Trouillas P, Calliste C, et al. Density functional theory study of the conformational, electronic, and antioxidant properties of natural chalcones. J Phys Chem A. 2007;111(6):1138–1145.
  • Veitch NC. Isoflavonoids of the Leguminosae. Nat Prod Rep. 2007;24(2):417–464.
  • Amić A, Marković Z, Klein E, et al. Theoretical study of the thermodynamics of the mechanisms underlying antiradical activity of cinnamic acid derivatives. Food Chem. 2018;246:481–489.
  • Amić A, Marković Z, Dimitrić Marković JM, et al. Antioxidative potential of ferulic acid phenoxyl radical. Phytochemistry. 2020;170:112218.
  • Pelucchi M, Cavallotti C, Cuoci A, et al. Detailed kinetics of substituted phenolic species in pyrolysis bio-oils. React Chem Eng. 2019;4(3):490–506.
  • Shaw A, Zhang X. Density functional study on the thermal stabilities of phenolic bio-oil compounds. Fuel. 2019;255:115732.
  • Agrawal K, Verma AM, Kishore N. Thermochemical conversion of guaiacol in aqueous phase by density functional theory. ChemistrySelect. 2019;4(20):6013–6025.
  • Pratt DA, de Heer MI, Mulder P, et al. Oxygen-carbon bond dissociation enthalpies of benzyl phenyl ethers and anisoles. An example of temperature dependent substituent effects. J Am Chem Soc. 2001;123(23):5518–5526.
  • Madureira J, Barros L, Melo R, et al. Degradation of phenolic acids by gamma radiation as model compounds of Cork wastewaters. Chem Eng J. 2018;341:227–237.
  • Rozniecka E, Zawisza I, Jawiczuk M, et al. Electrochemical and IR spectroscopic detection of oxidation products of the monomer and dimer of vanillyl alcohol in a sol-gel processed silicate matrix. J Electroanal Chem. 2010;645(2):123–134.
  • Ragnar M, Lindgren CHT, Nilvebrant N-O. pKa-Values of guaiacyl and syringyl phenols related to lignin. J Wood Chem Technol. 2000;20(3):277–305.
  • Enache TA, Oliveira-Brett AM. Phenol and para-substituted phenols electrochemical oxidation pathways. J Electroanal Chem. 2011;655(1):9–16.
  • Lukeš V, Kováčová A, Hartmann H. On thermodynamics of electron, proton and PCET processes of catechol, hydroquinone and resorcinol – consequences for redox properties of polyphenolic compounds. J Mol Liq. 2022;360:119356.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16, Revision C.01. Wallingford (CT): Gaussian Inc; 2016.
  • Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account. 2008;120(1–3):215–241.
  • Becke A, Density-Functional Thermochemistry III. The role of exact exchange. J Chem Phys. 1993;98(7):5648–5652.
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988;37(2):785–789.
  • Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem. 2011;32(7):1456–1465.
  • Hariharan PC, Pople JA. The influence of polarization functions on molecular orbital hydrogenation energies. Theoret Chim Acta. 1973;28(3):213–222.
  • Rassolov V, Pople JA, Ratner M, et al. 6-31G* basis set for atoms K through Zn. J Chem Phys. 1998;109(4):1223–1229.
  • Curtiss LA, Redfern PC, Raghavachari K. Gaussian-4 theory. J Chem Phys. 2007;126(8):084108.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, Revision D.01. Wallingford (CT): Gaussian Inc; 2013.
  • Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B. 2009;113(18):6378–6396.
  • Bartmess JE. Thermodynamics of the electron and the proton. J Phys Chem. 1994;98(25):6420–6424.
  • Fifen JJ, Dhaouadi Z, Nsangou M. Revision of the thermodynamics of the proton in gas phase. J Phys Chem A. 2014;118(46):11090–11097.
  • Fifen JJ. Thermodynamics of the electron revisited and generalized. J Chem Theory Comput. 2013;9(7):3165–3169.
  • Marković Z, Tošović J, Milenković D, et al. Revisiting the solvation enthalpies and free energies of the proton and electron in various solvents. Comput Theor Chem. 2016;1077:11–17.
  • Michalík M, Poliak P, Lukeš V, et al. From phenols to quinones: thermodynamics of radical scavenging activity of Para-substituted phenols. Phytochemistry. 2019;166:112077.
  • de Heer MI, Korth H-G, Mulder P. Poly methoxy phenols in solution: O–H bond dissociation enthalpies, structures, and hydrogen bonding. J Org Chem. 1999;64(19):6969–6975.
  • Biela M, Kleinová A, Klein E. Thermodynamics of radical scavenging effect of deprotonated isoflavones in aqueous solution. J Mol Liq. 2022;345:117861.
  • Lengyel J, Rimarčík J, Vagánek A, et al. On the radical scavenging activity of isoflavones: thermodynamics of O–H bond cleavage. Phys Chem Chem Phys. 2013;15(26):10895–10903.
  • Bordwell FG, Cheng J-P. Substituent effects on the stabilities of phenoxyl radicals and the acidities of phenoxyl radical cations. J Am Chem Soc. 1991;113(5):1736–1743.
  • Tohma H, Morioka H, Harayama Y, et al. Novel and efficient synthesis of p-quinones in water via oxidative demethylation of phenol ethers using hypervalent iodine(III) reagents. Tetrahedron Lett. 2001;42(39):6899–6902.
  • Kuwabara K, Sakurai Y, Sanuki H, et al. Application of a stopped-flow EPR method for the detection of short-lived flavonoid semiquinone radicals produced by oxidation using 15N-labeled nitrosodisulfonate radical (Fremy’s salt). Appl Magn Reson. 2018;49(8):911–924.
  • Huvaere K, Olsen K, Skibsted LH. Quenching of triplet-excited flavins by flavonoids. Structural assessment of antioxidative activity. J Org Chem. 2009;74(19):7283–7293.
  • Steenken S, O’Neill P. Oxidative demethoxylation of methoxylated phenols and hydroxybenzoic acids by the OH radical. An in situ electron spin resonance, conductometric pulse radiolysis, and product analysis study. J Phys Chem. 1977;81(6):505–508.
  • Sun Y, Fenster M, Yu A, et al. The effect of metal ions on the reaction of hydrogen peroxide with Kraft lignin model compounds. Can J Chem. 1999;77(5–6):667–675.
  • Zhang M-X, Hu X-H, Xu Y-H, et al. Selective dealkylation of alkyl aryl ethers. Asian J Org Chem. 2015;4(10):1047–1049.
  • Morteo-Flores F, Roldan A. Mechanisms and trends of guaiacol hydrodeoxygenation on transition metal catalysts. Front Catal. 2022;2:861364.
  • Maercker A. Ether cleavage with organo-alkali-metal compounds and alkali metals. Angew Chem Int Ed Engl. 1987;26(10):972–989.
  • Musgrave OC. The oxidation of alkyl aryl ethers. Chem Rev. 1969;69(4):499–531.
  • Xu H, Pratt ST. Photodissociation of anisole and absolute photoionization cross-section of the phenoxy radical. J Phys Chem A. 2013;117(46):12075–12081.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.