175
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Assessment of antioxidant and antiparkinsonian potential of a new diterpene isolated from Croton argyrophylloides

, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, & show all
Pages 760-770 | Received 16 Nov 2022, Accepted 31 Jan 2023, Published online: 22 Feb 2023

References

  • Silva GF, Caruzo MBR. Diversity of Croton (Euphorbiaceae) in the Itatiaia National Park. Brazil: Rodriguesia. 2017;47.
  • Morais SM, Catunda Júnior FEA, Silva ARA, et al. Atividade antioxidante de óleos essenciais de espécies de croton do nordeste do brasil. Quím Nova. 2006;29(5):907–910.
  • Santos HS, Barros FWA, Albuquerque MRJR, et al. Cytotoxic diterpenoids from croton argyrophylloides. J Nat Prod. 2009;72(10):1884–1887.
  • Alves M, Araújo MDFL, Gusmão CLS, et al. Diversity and uses of the genus croton (euphorbiaceae) in Northeastern Brazil. Med Plant: biodiversity and Drugs. 2012;1:106–141.
  • Sá Firmino NC, Alexandre FSO, de Vasconcelos MA, et al. Diterpenes isolated from Croton blanchetianus Baill: potential compounds in prevention and control of the oral streptococci biofilms. Ind Crops Prod. 2019;131:371–377.
  • González-Burgos E, Carretero ME, Gómez-Serranillos MP. Involvement of Nrf2 signaling pathway in the neuroprotective activity of natural kaurane diterpenes. Neuroscience. 2013;231:400–412.
  • Wang K, Yu H, Wu H, et al. A new casbane diterpene from Euphorbia pekinensis. Nat Prod Res. 2015;29(15):1456–1460.
  • Wu CR, Tsai CW, Chang SW, et al. Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson’s disease: involvement of antioxidative enzymes induction. Chem Biol Interact. 2015;225:40–46.
  • Islam MT, Da Silva CB, De Alencar MVOB, et al. Diterpenes: advances in neurobiological drug research. Phytother Res. 2016;30(6):915–928.
  • Devappa RK, Makkar HPS, Becker K. Jatropha toxicity – a review. J Toxicol Environment Health. 2010;13(6):476–507.
  • Song JX, Sze SCW, Ng TB, et al. Anti-Parkinsonian drug discovery from herbal medicines: What have we got from neurotoxic models? J Ethnopharmacol. 2012;139(3):698–711.
  • Lehmensiek V, Tan EM, Liebau S, et al. Dopamine transporter-mediated cytotoxicity of 6-hydroxydopamine in vitro depends on expression of mutant α-synucleins related to Parkinson’s disease. Neurochem Int. 2006;48(5):329–340.
  • Souza RB, Frota AF, Sousa RS, et al. Neuroprotective effects of sulphated agaran from marine alga gracilaria cornea in rat 6-Hydroxydopamine Parkinson’s disease model: behavioural, neurochemical and transcriptional alterations. Basic Clin Pharmacol Toxicol. 2017;120(2):159–170.
  • Moreira Vasconcelos CF, da Cunha Ferreira NM, Hardy Lima Pontes N, et al. Eugenol and its association with levodopa in 6-hydroxydopamine-induced hemiparkinsonian rats: behavioural and neurochemical alterations. Basic Clin Pharmacol Toxicol. 2020;127(4):287–302.
  • Sarrafchi A, Bahmani M, Shirzad H, et al. Oxidative stress and parkinson's disease: New hopes in treatment with herbal antioxidants. Curr Pharm Des. 2015;22(2):238–246.
  • Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. Food Sci Tech. 1995;28:25–30.
  • Green LC, Tannenbaum SR, Goldman P. Nitrate synthesis in the germfree and conventional rat. Science. 1981;212(4490):56–58.
  • Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990;186:421–431.
  • Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25(1):192–205.
  • Boer AH, De Leeuwen IJV, et al. Fusicoccanes: diterpenes with surprising biological functions. Trend Plant Sci. 2012;17(6):360–368.
  • Ruzicka L. The isoprene rule and the biogenesis of terpenic compounds. Experientia. 1953;9(10):357–367.
  • González-Burgos E, Gomez-Serranillos MP. Terpene compounds in nature: a review of their potential antioxidant activity. Curr Med Chem. 2012;19(31):5319–5341.
  • Hwang YP, Jeong HG. The coffee diterpene kahweol induces heme oxygenase-1 via the PI3K and p38/Nrf2 pathway to protect human dopaminergic neurons from 6-hydroxydopamine-derived oxidative stress. FEBS Lett. 2008;17:2655–2662.
  • Jo SK, Hong JY, Park HJ, et al. Anticancer activity of novel daphnane diterpenoids from Daphne genkwa through cell-cycle arrest and suppression of Akt/STAT/Src signalings in human lung cancer cells. Biomol Ther. 2012;20(6):513–519.
  • Merecz-Sadowska A, Sitarek P, Kucharska E, et al. Antioxidant properties of plant-derived phenolic compounds and their effect on skin fibroblast cells. Antioxidants. 2021;10(5):726.
  • Barrero AF, Herrador MM, Arteaga P, et al. Antioxidant activity of diterpenes and polyphenols fromOphryosporus heptanthus. J Agric Food Chem. 2006;54(7):2537–2542.
  • Percário S, Barbosa AS, Varela ELP, et al. Oxidative stress in Parkinson’s disease: potential benefits of antioxidant supplementation. Oxid Med Cell Longev. 2020;2020:2360872.
  • Kim JY, Jung KS, Lee KJ, et al. The coffee diterpene kahweol suppress the inducible nitric oxide synthase expression in macrophages. Cancer Lett. 2004;30:147–154.
  • Bajpai VK, Sharma A, Kang SC, et al. Antioxidant, lipid peroxidation inhibition and free radical scavenging efficacy of a diterpenoid compound sugiol isolated from Metasequoia glyptostroboides. Asian Pac J Trop Med. 2014;7(1):9–15.
  • Polbuppha I, Suthiphasilp V, Maneerat T, et al. Nitric oxide production inhibitory activity of clerodane diterpenes from Monoon membranifolium. Nat Prod Res. 2022;36(10):2513–2517.
  • González-Burgos E, Palomino OM, Carretero ME, et al. Neuroprotección mediada por diterpenos aislados de Sideritis spp. frente al estrés oxidativo en astrocitos. Ars Pharm. 2010;3:617–627.
  • Lu X, Jiang J, Sun K, et al. Enhanced antioxidant activity of aqueous phase bio-oil by hydrothermal pretreatment and its structure-activity relationship. J Analytic Applied Pyrolysis. 2021;153:104992.
  • Blesa J, Przedborski S. Parkinson’s disease: animal models and dopaminergic cell vulnerability. Front Neuroanat. 2014;155:1–12.
  • Sarmento Silva AJ. Alpha-tocopherol counteracts cognitive and motor deficits induced by repeated treatment with reserpine. Biochem Pharmacol. 2015;4:1–6.
  • Lima Pontes NH, Sousa dos Reis TD, Moreira Vasconcelos CF, et al. Impact of eugenol on in vivo model of 6-hydroxydopamine-induced oxidative stress. Free Radic Res. 2021;55(5):556–568.
  • Araújo DP, Sousa CNS, Araújo PVP, et al. Behavioral and neurochemical effects of alpha-lipoic acid in the model of Parkinson’s disease induced by unilateral stereotaxic injection of 6-ohda in rat. Evidence-based complement. Altern Med 2013;2013:571378.
  • Hong Z, Wang G, Gu J, et al. Di. Tripchlorolide protects against MPTP-induced neurotoxicity in C57BL/6 mice. Eur J Neurosci. 2007;26(6):1500–1508.
  • Xu J, Guo P, Liu C, et al. Neuroprotective kaurane diterpenes from Fritillaria ebeiensis. Biosci Biotechnol Biochem. 2011;75(7):1386–1388.
  • Zhang XS, Ha S, Wang XL, et al. Tanshinone IIA protects dopaminergic neurons against 6-hydroxydopamine-induced neurotoxicity through miR-153/NF-E2-related factor 2/antioxidant response element signaling pathway. Neuroscience. 2015;303:489–502.
  • Lin CY, Tsai CW, Tsai CW. Carnosic acid protects SH-SY5Y cells against 6-hydroxydopamine-induced cell death through upregulation of parkin pathway. Neuropharmacology. 2016;110(Pt A):109–117.
  • Li W, Dai RJ, Yu YH, et al. Antihyperglycemic effect of Cephalotaxus sinensis leaves and GLUT-4 translocation facilitating activity of its flavonoid constituents. Biol Pharm Bull. 2007;30(6):1123–1129.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.