210
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Low-temperature plasma as magic wand to differentiate between the good and the evil

ORCID Icon, , , ORCID Icon, , & ORCID Icon show all
Pages 38-46 | Received 29 Dec 2022, Accepted 26 Feb 2023, Published online: 22 Mar 2023

References

  • Toyokuni S, Ikehara Y, Kikkawa F, et al. Plasma medical science. London, UK: Academic Press; 2018.
  • Tsurutani B, Suess S. From the sun-auroras, magnetic storms, solar flares, cosmic rays. Washington (DC): American Geophysical Union; 1999.
  • Michel M, Berthelier J-J, Jasperse J, et al. Lightning-induced lower-hybrid turbulence and ion heating observed in deep equatorial plasma density depletions during intense magnetic storms. 37th COSPAR Sci Assembly. 2008;37:2027.
  • Stark CR, Helling C, Diver DA, et al. Electrostatic activation of prebiotic chemistry in substellar atmospheres. Int J Astrobiol. 2014;13(2):165–172.
  • Sánchez M, Sabio L, Gálvez N, et al. Iron chemistry at the service of life. IUBMB Life. 2017;69(6):382–388.
  • Toyokuni S, Kong Y, Zheng H, et al. Iron as spirit of life to share under monopoly. J Clin Biochem Nutr. 2022;71(2):78–88.
  • Copsey M. Plasmas can clean up your backyard. Phys World. 1991;4(5):23.
  • Yerokhin A, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering. Surface Coatings Technol. 1999;122(2–3):73–93.
  • Jo B-H, Van Lerberghe LM, Motsegood KM, et al. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J Microelectromech Syst. 2000;9(1):76–81.
  • Rae S, Burnett K. Possible production of cold plasmas through optical-field-induced ionization. Physical Rev A. 1992;46(4):2077.
  • Guo J, Huang K, Wang J. Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation: a review. Food Control. 2015;50:482–490.
  • Tanaka H, Mizuno M, Toyokuni S, et al. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density. Phys Plasmas. 2015;22(12):122004. (1994-present)
  • Tanaka H, Nakamura K, Mizuno M, et al. Non-thermal atmospheric pressure plasma activates lactate in Ringer’s solution for anti-tumor effects. Sci Rep. 2016;6:36282.
  • Nakamura K, Peng Y, Utsumi F, et al. Novel intraperitoneal treatment with non-thermal plasma-activated medium inhibits metastatic potential of ovarian cancer cells. Sci Rep. 2017;7(1):6085.
  • Puač N, Gherardi M, Shiratani M. Plasma agriculture: a rapidly emerging field. Plasma Proc Polym. 2018;15(2):1700174.
  • Cannazzaro S, Traversari S, Cacini S, et al. Non-thermal plasma treatment influences shoot biomass, flower production and nutrition of gerbera plants depending on substrate composition and fertigation level. Plants. 2021;10(4):689.
  • Kulawik P, Kumar Tiwari B. Recent advancements in the application of non-thermal plasma technology for the seafood industry. Crit Rev Food Sci Nutr. 2019;59(19):3199–3210.
  • Okazaki Y, Wang Y, Tanaka H, et al. Direct exposure of non-equilibrium atmospheric pressure plasma confers simultaneous oxidative and ultraviolet modifications in biomolecules. J Clin Biochem Nutr. 2014;55(3):207–215.
  • Shi L, Wang Y, Ito F, et al. Biphasic effects of l-ascorbate on the tumoricidal activity of non-thermal plasma against malignant mesothelioma cells. Arch Biochem Biophys. 2016;605:109–116.
  • Shi L, Ito F, Wang Y, et al. Non-thermal plasma induces a stress response in mesothelioma cells resulting in increased endocytosis, lysosome biogenesis and autophagy. Free Radic Biol Med. 2017;108:904–917.
  • Okazaki Y, Tanaka H, Hori M, et al. l-Dehydroascorbic acid recycled by thiols efficiently scavenges non-thermal plasma-induced hydroxyl radicals. Arch Biochem Biophys. 2019;669:87–95.
  • Okazaki Y, Tanaka H, Matsumoto K-I, et al. Non-thermal plasma-induced DMPO-OH yields hydrogen peroxide. Arch Biochem Biophys. 2021;705:108901.
  • Okazaki Y, Ishidzu Y, Ito F, et al. L-Dehydroascorbate efficiently degrades non-thermal plasma-induced hydrogen peroxide. Arch Biochem Biophys. 2021;700:108762.
  • Okazaki Y, Sasaki K, Ito N, et al. Tetrachloroaurate (III)-induced oxidation increases non-thermal plasma-induced oxidative stress. Free Radic Res. 2022;56(1):17–27.
  • Okazaki Y, Ito N, Tanaka H, et al. Non-thermal plasma elicits ferrous chloride-catalyzed DMPO-OH. Free Radic Res. 2022;56(9-10):595–606.
  • Toyokuni S. Iron and carcinogenesis: from Fenton reaction to target genes. Redox Rep. 2002;7(4):189–197.
  • Wriggleworth JM, Baum H. The biochemical function of iron. In: Jacobs A, Worwood M, editors. Iron in biochemistry and medicine, II. London: Academic Press; 1980. p. 29–86.
  • Andrews NC. Disorders of iron metabolism. N Engl J Med. 1999;341(26):1986–1995.
  • Sutherland R, Delia D, Schneider C, et al. Ubiquitous cell-surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin. Proc Natl Acad Sci USA. 1981;78(7):4515–4519.
  • Kawabata H. Transferrin and transferrin receptors update. Free Radic Biol Med. 2019;133:46–54.
  • Casey JL, Hentze MW, Koeller DM, et al. Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science. 1988;240(4854):924–928.
  • Hentze MW, Caughman SW, Rouault TA, et al. Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science. 1987;238(4833):1570–1573.
  • Gunshin H, Mackenzie B, Berger U, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997;388(6641):482–488.
  • Donovan A, Brownlie A, Zhou Y, et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 2000;403(6771):776–781.
  • Donovan A, Lima C, Pinkus J, et al. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 2005;1(3):191–200.
  • Yanatori I, Kishi F. DMT1 and iron transport. Free Radic Biol Med. 2019;133:55–63.
  • Koppenol WH, Hider RH. Iron and redox cycling. Do’s and don’ts. Free Radic Biol Med. 2019;133:3–10.
  • Mancias JD, Wang XX, Gygi SP, et al. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 2014;509(7498):105–109.
  • Philpott CC, Jadhav S. The ins and outs of iron: escorting iron through the mammalian cytosol. Free Radic Biol Med. 2019;133:112–117.
  • Yanatori I, Richardson DR, Toyokuni S, et al. The new role of poly (rC)-binding proteins as iron transport chaperones: proteins that could couple with inter-organelle interactions to safely traffic iron. Biochim Biophys Acta Gen Subj. 2020;1864(11):129685.
  • Toyokuni S. The origin and future of oxidative stress pathology: from the recognition of carcinogenesis as an iron addiction with ferroptosisresistance to non-thermal plasma therapy. Pathol Int. 2016;66(5):245–259.
  • Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–285.
  • Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022;185(14):2401–2421.
  • Waksman SA. Tenth anniversary of the discovery of streptomycin, the first chemotherapeutic agent found to be effective against tuberculosis in humans. Am Rev Tuberc. 1954;70(1):1–8.
  • Horsburgh CR, Barry CE, Lange C. Treatment of tuberculosis. N Engl J Med. 2015;373(22):2149–2160.
  • Toyokuni S, Yanatori I, Kong Y, et al. Ferroptosis at the crossroads of infection, aging and cancer. Cancer Sci. 2020;111(8):2665–2671.
  • Hatanaka Y, Kuwata T, Morii E, et al. The Japanese Society of Pathology practical guidelines on the handling of pathological tissue samples for cancer genomic medicine. Pathol Int. 2021;71(11):725–740.
  • Vogelstein B, Kinzler KW. The genetic basis of human cancer. New York: McGraw-Hill; 1998.
  • Collins FS, McKusick VA. Implications of the human genome project for medical science. JAMA. 2001;285(5):540–544.
  • Collins FS, Morgan M, Patrinos A. The human genome project: lessons from large-scale biology. Science. 2003;300(5617):286–290.
  • Toyokuni S, Kong Y, Cheng Z, et al. Carcinogenesis as side effects of iron and oxygen utilization: from the unveiled truth toward ultimate bioengineering. Cancers. (Basel). 2020;12(11):3320.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674.
  • Ito F, Nishiyama T, Shi L, et al. Contrasting intra- and extracellular distribution of catalytic ferrous iron in ovalbumin-induced peritonitis. Biochem Biophys Res Commun. 2016;476(4):600–606.
  • Schoenfeld JD, Sibenaller ZA, Mapuskar KA, et al. O2(−) and H2O2-mediated disruption of Fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate. Cancer cell. 2017;31(4):487–500.e8.
  • Toyokuni S, Okamoto K, Yodoi J, et al. Persistent oxidative stress in cancer. FEBS Lett. 1995;358(1):1–3.
  • Nakamura K, Yoshikawa N, Yoshihara M, et al. Adjusted multiple gases in the plasma flow induce differential antitumor potentials of plasma-activated solutions. Plasma Process Polym. 2020;17:e1900259.
  • Jiang L, Zheng H, Lyu Q, et al. Lysosomal nitric oxide determines transition from autophagy to ferroptosis after exposure to plasma-activated Ringer’s lactate. Redox Biol. 2021;43:101989.
  • Kurake N, Tanaka H, Ishikawa K, et al. Cell survival of glioblastoma grown in medium containing hydrogen peroxide and/or nitrite, or in plasma-activated medium. Arch Biochem Biophys. 2016;605:102–108.
  • Tanaka H, Hori M. Medical applications of non-thermal atmospheric pressure plasma. J Clin Biochem Nutr. 2017;60(1):29–32.
  • Kajiyama H, Utsumi F, Nakamura K, et al. Future perspective of strategic non-thermal plasma therapy for cancer treatment. J Clin Biochem Nutr. 2017;60(1):33–38.
  • Nakamura K, Yoshikawa N, Mizuno Y, et al. Preclinical verification of the efficacy and safety of aqueous plasma for ovarian cancer therapy. Cancers (Basel). 2021;13(5):1141.
  • Tanaka H, Mizuno M, Katsumata Y, et al. Oxidative stress-dependent and -independent death of glioblastoma cells induced by non-thermal plasma-exposed solutions. Sci Rep. 2019;9(1):13657.
  • Sato K, Shi L, Ito F, et al. Non-thermal plasma specifically kills oral squamous cell carcinoma cells in a catalytic Fe(II)-dependent manner. J Clin Biochem Nutr. 2019;65(1):8–15.
  • Kumar N, Attri P, Choi EH, et al. Influence of water vapour with non-thermal plasma jet on the apoptosis of SK-BR-3 breast cancer cells. RSC Adv. 2015;5(19):14670–14677.
  • Choi J-S, Kim J, Hong Y-J, et al. Evaluation of non-thermal plasma-induced anticancer effects on human colon cancer cells. Biomed Opt Express. 2017;8(5):2649–2659.
  • Kurake N, Ishikawa K, Tanaka H, et al. Non-thermal plasma-activated medium modified metabolomic profiles in the glycolysis of U251SP glioblastoma. Arch Biochem Biophys. 2019;662:83–92.
  • Akter M, Jangra A, Choi SA, et al. Non-thermal atmospheric pressure bio-compatible plasma stimulates apoptosis via p38/MAPK mechanism in U87 malignant glioblastoma. Cancers. 2020;12(1):245.
  • Ma J, Yu K, Cheng C, et al. Targeting Nrf2-mediated heme oxygenase-1 enhances non-thermal plasma-induced cell death in non-small-cell lung cancer A549 cells. Arch Biochem Biophys. 2018;658:54–65.
  • Wada N, Ikeda J-I, Tanaka H, et al. Effect of plasma-activated medium on the decrease of tumorigenic population in lymphoma. Pathol Res Pract. 2017;213(7):773–777.
  • Liu J-R, Wu Y-M, Xu G-M, et al. Low-temperature plasma induced melanoma apoptosis by triggering a p53/PIGs/caspase-dependent pathway in vivo and in vitro. Journal of Physics D: Appl Phys. 2019;52(31):315204.
  • Liedtke KR, Bekeschus S, Kaeding A, et al. Non-thermal plasma-treated solution demonstrates antitumor activity against pancreatic cancer cells in vitro and in vivo. Sci Rep. 2017;7(1):1–12.
  • Brullé L, Vandamme M, Riès D, et al. Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model. PLoS One. 2012;7(12):e52653.
  • Hattori N, Yamada S, Torii K, et al. Effectiveness of plasma treatment on pancreatic cancer cells. Int J Oncol. 2015;47(5):1655–1662.
  • Fofana M, Bunay J, Judee F, et al. Selective treatments of prostate tumor cells with a cold atmospheric plasma jet. Clin Plasma Med. 2020;17–18:100098.
  • Torii K, Yamada S, Nakamura K, et al. Effectiveness of plasma treatment on gastric cancer cells. Gastric Cancer. 2015;18(3):635–643.
  • Mohades S, Barekzi N, Laroussi M. Efficacy of low temperature plasma against SCaBER cancer cells. Plasma Proc Polym. 2014;11(12):1150–1155.
  • Tanaka H, Hosoi Y, Ishikawa K, et al. Low temperature plasma irradiation products of sodium lactate solution that induce cell death on U251SP glioblastoma cells were identified. Sci Rep. 2021;11(1):1–10.
  • Toyokuni S. Oxidative stress as an iceberg in carcinogenesis and cancer biology. Arch Biochem Biophys. 2016;595:46–49.
  • Bafoil M, Jemmat A, Martinez Y, et al. Effects of low temperature plasmas and plasma activated waters on Arabidopsis thaliana germination and growth. PLoS One. 2018;13(4):e0195512.
  • Asl PJ, Rajulapati V, Gavahian M, et al. Non-thermal plasma technique for preservation of raw or fresh foods: a review. Food Control. 2021;134:108560.
  • Yu Y, Tan M, Chen H, et al. Non-thermal plasma suppresses bacterial colonization on skin wound and promotes wound healing in mice. J Huazhong Univ Sci Technolog Med Sci. 2011;31(3):390–394.
  • Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–257.
  • Kumar V, Abbas AK, Aster JC (eds.). Robbins basic pathology. Philadelphia, PA: Elsevier; 2018.
  • Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25(3):486–541.
  • Gutteridge J, Rowley D, Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Detection of ‘free’ iron in biological systems by using bleomycin-dependent degradation of DNA. Biochem J. 1981;199(1):263–265.
  • Gutteridge JM. Lipid peroxidation and possible hydroxyl radical formation stimulated by the self-reduction of a doxorubicin-iron (III) complex. Biochem Pharmacol. 1984;33(11):1725–1728.
  • IARC WHO. Asbestos (chrysotile, amosite, crocidolite, tremolite, actinolite, and anthophyllite). IARC monographs on the evaluation of carcinogenic risks to humans. A review of human carcinogens; part C: arsenic, metals, fibres, and dusts. Volume 100C. Lyon (France): IARC WHO. 2012. p. 219–309.
  • Jiang L, Akatsuka S, Nagai H, et al. Iron overload signature in chrysotile-induced malignant mesothelioma. J Pathol. 2012;228(3):366–377.
  • Toyokuni S. Iron addiction with ferroptosis-resistance in asbestos-induced mesothelial carcinogenesis: toward the era of mesothelioma prevention. Free Radic Biol Med. 2019;133:206–215.
  • Ito F, Yanatori I, Maeda Y, et al. Asbestos conceives Fe(II)-dependent mutagenic stromal milieu through ceaseless macrophage ferroptosis and beta-catenin induction in mesothelium. Redox Biol. 2020;36:101616.
  • Ito F, Kato K, Yanatori I, et al. Ferroptosis-dependent extracellular vesicles from macrophage contribute to asbestos-induced mesothelial carcinogenesis through loading ferritin. Redox Biol. 2021;47:102174.
  • Yue L, Luo Y, Jiang L, et al. PCBP2 knockdown promotes ferroptosis in malignant mesothelioma. Pathol Int. 2022;72(4):242–251.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.