2,604
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Generation and measurement of low-temperature plasma for cancer therapy: a historical review

ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & show all
Pages 239-270 | Received 13 Mar 2023, Accepted 23 Jun 2023, Published online: 04 Jul 2023

References

  • Alfvén H. The plasma universe. Phys Today. 1986;39(9):22–27. doi: 10.1063/1.881039.
  • Ozaki M, Shiokawa K, Kataoka R, et al. Localized mesospheric ozone destruction corresponding to isolated proton aurora coming from earth’s radiation belt. Sci Rep. 2022;12(1):16300. doi: 10.1038/s41598-022-20548-2.
  • Chamberlain JW. Physics of the aurora and airglow. In: International geophysics series. Vol. 2. London: Academic Press; 1961.
  • Kambara M, Kawaguchi S, Lee HJ, et al. Science-based, data-driven developments in plasma processing for material synthesis and device-integration technologies. Jpn J Appl Phys. 2023;62(SA):SA0803. doi: 10.35848/1347-4065/ac9189.
  • Tanaka H, Ishikawa K, Mizuno M, et al. State of the art in medical applications using non-thermal atmospheric pressure plasma. Rev Mod Plasma Phys. 2017;1(1):1–89. doi: 10.1007/s41614-017-0004-3.
  • Fridman A. Plasma chemistry. Cambridge; New York (NY): Cambridge University Press; 2008.
  • Kanazawa S, Kogoma M, Moriwaki T, et al. Stable glow plasma at atmospheric-pressure. J Phys D Appl Phys. 1988;21(5):838–840. doi: 10.1088/0022-3727/21/5/028.
  • Yoshimura S, Otsubo Y, Yamashita A, et al. Insights into normothermic treatment with direct irradiation of atmospheric pressure plasma for biological applications. Jpn J Appl Phys. 2021;60(1):010502. doi: 10.35848/1347-4065/abcbd2.
  • Laroussi M, Kong MG, Morfill G, et al. Plasma medicine. Cambridge; New York (NY): Cambridge University Press; 2012.
  • Fridman A, Friedman G. Plasma medicine. United Kingdom: John Wiley Sons; 2013.
  • Metelmann HR, von Woedtke T, Weltmann KD. Comprehensive clinical plasma medicine. Berlin, Heidelberg: Springer Verlag; 2018.
  • Iwasaki M, Inui H, Matsudaira Y, et al. Nonequilibrium atmospheric pressure plasma with ultrahigh electron density and high performance for glass surface cleaning. Appl Phys Lett. 2008;92(8):081503. doi: 10.1063/1.2885084.
  • Toyokuni S, Ikehara Y, Kikkawa F, et al. Plasma medical science. London, UK: Academic Press; 2018.
  • Kaneko T, Kato H, Yamada H, et al. Functional nitrogen science based on plasma processing: quantum devices, photocatalysts and activation of plant defense and immune systems. Jpn J Appl Phys. 2022;61(SA):SA0805. doi: 10.35848/1347-4065/ac25dc.
  • Jinno M, Satoh S, Ikeda Y, et al. The new technology of molecular and gene introduction method using discharge plasma: plasma brings features of random genome integration-free and damage-free to cells, genomic-DNA and external introducing molecules. Jpn J Appl Phys. 2021;60(3):030502. doi: 10.35848/1347-4065/abe60a.
  • Neumann E, Schaefer-Ridder M, Wang Y, et al. Gene transfer into mouse lymphoma cells by electroporation in high electric fields. EMBO J. 1982;1(7):841–845. doi: 10.1002/j.1460-2075.1982.tb01257.x.
  • Jinno M, Tachibana K, Motomura H, et al. Improvement of efficiency and viability in plasma gene transfection by plasma minimization and optimization electrode configuration. Jpn J Appl Phys. 2016;55(7S2):07LG09. doi: 10.7567/JJAP.55.07LG09.
  • Kido Y, Motomura H, Ikeda Y, et al. Clarification of electrical current importance in plasma gene transfection by equivalent circuit analysis. PLOS One. 2021;16(1):e0245654. doi: 10.1371/journal.pone.0245654.
  • Jinno M, Ikeda Y, Motomura H, et al. Investigation of plasma induced electrical and chemical factors and their contribution processes to plasma gene transfection. Arch Biochem Biophys. 2016;605:59–66. doi: 10.1016/j.abb.2016.04.013.
  • Ikeda Y, Motomura H, Kido Y, et al. Effects of molecular size and chemical factor on plasma gene transfection. Jpn J Appl Phys. 2016;55(7S2):07LG06. doi: 10.7567/JJAP.55.07LG06.
  • Martines E. Interaction of cold atmospheric plasmas with cell membranes in plasma medicine studies. Jpn J Appl Phys. 2020;59(SA):SA0803. doi: 10.7567/1347-4065/ab4860.
  • Hiramatsu T, Hirashige H, Kido Y, et al. Importance of collision frequency in the molecular size dependency of gene transfer efficiency in the surface discharge method. Jpn J Appl Phys. 2019;58(SE):SEEG05. doi: 10.7567/1347-4065/ab17c6.
  • Arai S, Bidbayasakh K, Fukuda A, et al. Oxidative modification in nuclear and mitochondrial DNA and its removal in A549 human lung cancer cells exposed to cold atmospheric-pressure plasma. Jpn J Appl Phys. 2022;61(9):096003. doi: 10.35848/1347-4065/ac8536.
  • Kobayashi M, Wang Y, Kumagai S, et al. Effects of cold atmospheric plasma irradiation on Arabidopsis seedlings. Jpn J Appl Phys. 2020;59(SA):SAAB09. doi: 10.7567/1347-4065/ab4e7b.
  • Kobayashi M, Tomoda K, Morihara H, et al. Non-thermal atmospheric-pressure plasma potentiates mesodermal differentiation of human induced pluripotent stem cells. Heliyon. 2022;8(12):e12009. doi: 10.1016/j.heliyon.2022.e12009.
  • Zhao Z, Li CJ, Zheng XL, et al. Periodical discharge regime transitions under long-term repetitive nanosecond pulses. Plasma Sources Sci Technol. 2022;31(4):045005. doi: 10.1088/1361-6595/ac6050.
  • Martell BC, Strobel LR, Guerra-Garcia C. DC-driven positive streamer coronas in airflow. Plasma Sources Sci Technol. 2022;31(8):085014. doi: 10.1088/1361-6595/ac844a.
  • Naidis GV, Babaeva NY. Electric field distributions along helium plasma jets. High Voltage. 2020;5(6):650–653. doi: 10.1049/hve.2020.0065.
  • Babaeva NY, Naidis GV. Universal nature and specific features of streamers in various dielectric media. J Phys D Appl Phys. 2021;54(22):223002. doi: 10.1088/1361-6463/abe9e0.
  • Babaeva NY, Naidis GV, Tereshonok DV, et al. Formation of wide negative streamers in air and helium: the role of fast electrons. J Phys D Appl Phys. 2023;56(3):035205. doi: 10.1088/1361-6463/aca776.
  • Tereshonok DV, Babaeva NY, Naidis GV, et al. Modeling of ionization waves in atmospheric-pressure argon in a long gap. IEEE Trans Plasma Sci. 2022;50(3):580–586. doi: 10.1109/TPS.2022.3147065.
  • Shahsavarian T, Cao Y. An inventive multi-scale, multiphysics modeling approach and comparative analysis of distinctive features of planar ionization waves in air: I. Negative streamers. J Phys D Appl Phys. 2022;55(24):245203. doi: 10.1088/1361-6463/ac59fd.
  • Shahsavarian T, Cao Y. An inventive multi-scale, multiphysics modelling approach and comparative analysis of distinctive features of planar ionization waves in air: II. Positive streamers. J Phys D Appl Phys. 2022;55(24):245204. doi: 10.1088/1361-6463/ac59fe.
  • Guo BH, Li XR, Ebert U, et al. A computational study of accelerating, steady and fading negative streamers in ambient air. Plasma Sources Sci Technol. 2022;31(9):095011. doi: 10.1088/1361-6595/ac8e2e.
  • Li XR, Guo BH, Sun AB, et al. A computational study of steady and stagnating positive streamers in N2-O2 mixtures. Plasma Sources Sci Technol. 2022;31(6):065011. doi: 10.1088/1361-6595/ac7747.
  • Li XR, Dijcks S, Nijdam S, et al. Comparing simulations and experiments of positive streamers in air: steps toward model validation. Plasma Sources Sci Technol. 2021;30(9):095002. doi: 10.1088/1361-6595/ac1b36.
  • Wang Z, Sun AB, Teunissen J. A comparison of particle and fluid models for positive streamer discharges in air. Plasma Sources Sci Technol. 2022;31(1):015012. doi: 10.1088/1361-6595/ac417b.
  • Huiskamp T, Ton C, Azizi M, et al. Effective streamer discharge control by tailored nanosecond-pulsed high-voltage waveforms. J Phys D Appl Phys. 2022;55(2):024001. doi: 10.1088/1361-6463/ac2969.
  • Sato Y, Ishikawa K, Tsutsumi T, et al. Numerical simulations of stable, high-electron-density atmospheric pressure argon plasma under pin-to-plane electrode geometry: effects of applied voltage polarity. J Phys D Appl Phys. 2020;53(26):265204. doi: 10.1088/1361-6463/ab7df0.
  • Nijdam S, Teunissen J, Ebert U. The physics of streamer discharge phenomena. Plasma Sources Sci Technol. 2020;29(10):103001. doi: 10.1088/1361-6595/abaa05.
  • Zhang X, Guo YL, Mirpour S, et al. Effects of a negative corona discharge on subsequent positive streamers. J Phys D Appl Phys. 2021;54(48):485202. doi: 10.1088/1361-6463/ac1f52.
  • Francisco H, Bagheri B, Ebert U. Electrically isolated propagating streamer heads formed by strong electron attachment. Plasma Sources Sci Technol. 2021;30(2):025006. doi: 10.1088/1361-6595/abdaa3.
  • Francisco H, Teunissen J, Bagheri B, et al. Simulations of positive streamers in air in different electric fields: steady motion of solitary streamer heads and the stability field. Plasma Sources Sci Technol. 2021;30(11):115007. doi: 10.1088/1361-6595/ac2f76.
  • Niknezhad M, Chanrion O, Kohn C, et al. A three-dimensional model of streamer discharges in unsteady airflow. Plasma Sources Sci Technol. 2021;30(4):045012. doi: 10.1088/1361-6595/abefa6.
  • Bazelyan EM, Aleksandrov NL. Electric field in a positive streamer in long air gaps. Plasma Phys Rep. 2022;48(7):789–797. doi: 10.1134/S1063780X22700222.
  • Zhao XE, Wang XK, Liu X, et al. Re-illumination of streamer stems under either rising or non-changing positive electric fields in long air gaps. AIP Adv. 2021;11(5):055303. doi: 10.1063/5.0050952.
  • Chen XC, Zhu YF, Wu Y, et al. Modeling of fast ionization waves in pure nitrogen at moderate pressure. Plasma Sources Sci Technol. 2021;30(6):065002. doi: 10.1088/1361-6595/abe612.
  • Li YT, Fu YY, Liu ZG, et al. Observation of electron runaway in a tip-plane air gap under negative nanosecond pulse voltage by PIC/MCC simulation. Plasma Sources Sci Technol. 2022;31(4):045027. doi: 10.1088/1361-6595/ac5ec9.
  • Starikovskiy AY, Aleksandrov NL, Shneider MN. Simulation of decelerating streamers in inhomogeneous atmosphere with implications for runaway electron generation. J Appl Phys. 2021;129(6):063301. doi: 10.1063/5.0037669.
  • Semenov IL, Weltmann KD. A spectral element method for modelling streamer discharges in low-temperature atmospheric-pressure plasmas. J Comp Phys. 2022;465:111378. doi: 10.1016/j.jcp.2022.111378.
  • El-Hawary HH, Abdel-Salam M, Hashem AAR, et al. Inception voltage of burst pulses, onset streamers, and positive glow in short rod-to-plane gaps. IEEE Trans Plasma Sci. 2021;49(6):1763–1775. doi: 10.1109/TPS.2021.3079212.
  • Tochikubo F, Komuro A. Review of numerical simulation of atmospheric-pressure non-equilibrium plasmas: streamer discharges and glow discharges. Jpn J Appl Phys. 2021;60(4):040501. doi: 10.35848/1347-4065/abe6e2.
  • Zhang QZ, Nguyen-Smith RT, Beckfeld F, et al. Computational study of simultaneous positive and negative streamer propagation in a twin surface dielectric barrier discharge via 2D PIC simulations. Plasma Sources Sci Technol. 2021;30(7):075017. doi: 10.1088/1361-6595/abf598.
  • Jiang H, Li WH, Xu YZ, et al. Influence of segmented grounding electrodes on electrical characteristics in annular surface dielectric barrier discharge. J Phys D Appl Phys. 2021;54(26):265203. doi: 10.1088/1361-6463/abf578.
  • Grosse K, Falke M, von Keudell A. Ignition and propagation of nanosecond pulsed plasmas in distilled water-negative vs positive polarity applied to a pin electrode. J Appl Phys. 2021;129(21):213302. doi: 10.1063/5.0045697.
  • Jungling E, Grosse K, von Keudell A. Propagation of nanosecond plasmas in liquids-streamer velocities and streamer lengths. J Vac Sci Technol A. 2022;40(4):043003. doi: 10.1116/6.0001669.
  • Yan WL, Wang ZX, Zhou ZW, et al. Prebreakdown negative streamers in liquid nitrogen: propagation characteristics and their influence on microsecond breakdown. J Phys D Appl Phys. 2021;54(46):465203. doi: 10.1088/1361-6463/ac1d70.
  • Choi JH, Noma Y, Terashima K. Optical and electrical analysis of a temperature-dependent mode transition of a helium cryoplasma. Plasma Sources Sci Technol. 2009;18(2):025023. doi: 10.1088/0963-0252/18/2/025023.
  • Sakakibara N, Terashima K. Generation of H2O-ice dielectric barrier discharge for the development of novel cryogenic reaction fields. J Phys D Appl Phys. 2017;50(22):22LT01. doi: 10.1088/1361-6463/aa6ddd.
  • Stauss S, Muneoka H, Terashima K. Review on plasmas in extraordinary media: plasmas in cryogenic conditions and plasmas in supercritical fluids. Plasma Sources Sci Technol. 2018;27(2):023003. doi: 10.1088/1361-6595/aaaa87.
  • Sakakibara N, Phua YY, Ito T, et al. Cryogenic-specific reddish coloration by cryoplasma: new explanation for color diversity of outer solar system objects. Astrophys J. 2020;891(2):L44. doi: 10.3847/2041-8213/ab75c5.
  • Phua YY, Sakakibara N, Ito T, et al. Temperature-dependent kinetic analysis of cryogenic-specific reddish coloration synthesized with cryoplasma. ICARUS. 2022;387:115152. doi: 10.1016/j.icarus.2022.115152.
  • Yan D, Sherman JH, Keidar M. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget. 2017;8(9):15977–15995. doi: 10.18632/oncotarget.13304.
  • Laroussi M. Cold plasma in medicine and healthcare: the new frontier in low temperature plasma applications. Front Phys. 2020;8:74. doi: 10.3389/fphy.2020.00074.
  • Yan D, Malyavko A, Wang Q, et al. Cold atmospheric plasma cancer treatment, a critical review. Appl Sci. 2021;11(16):7757. doi: 10.3390/app11167757.
  • Lu XP, Bruggeman PJ, Reuter S, et al. Grand challenges in low temperature plasmas. Front Phys. 2022;10:1040658. doi: 10.3389/fphy.2022.1040658.
  • Kovacevic VV, Sretenovic GB, Obradovic BM, et al. Low-temperature plasmas in contact with liquids–a review of recent progress and challenges. J Phys D. 2022;55:473002. doi: 10.1088/1361-6463/ac8a56
  • Viegas P, Slikboer E, Bonaventura Z, et al. Physics of plasma jets and interaction with surfaces: review on modelling and experiments. Plasma Sources Sci Technol. 2022;31(5):053001. doi: 10.1088/1361-6595/ac61a9.
  • Martinez L, Dhruv A, Balaras E, et al. On self organization: model for ionization wave propagation with targets of varying electrical properties. Plasma Sources Sci Technol. 2022;31(3):035004. doi: 10.1088/1361-6595/ac4b67.
  • Yoshimura S, Aramaki M, Otsubo Y, et al. Controlling feeding gas temperature of plasma jet with Peltier device for experiments with fission yeast. Jpn J Appl Phys. 2019;58(SE):SEEG03. doi: 10.7567/1347-4065/ab1473.
  • Oshita T, Kawano H, Takamatsu T, et al. Temperature controllable atmospheric plasma source. IEEE Trans Plasma Sci. 2015;43(6):1987–1992. doi: 10.1109/TPS.2015.2428696.
  • Yanagawa Y, Suenaga Y, Iijima Y, et al. Temperature-controlled atmospheric-pressure plasma treatment induces protein uptake via clathrin-mediated endocytosis in tobacco cells. Plant Biotechnol. 2022;39(2):179–183. doi: 10.5511/plantbiotechnology.22.0105a.
  • Nguyen-Smith RT, Boddecker A, Schucke L, et al. µs And ns twin surface dielectric barrier discharges operated in air: from electrode erosion to plasma characteristics. Plasma Sources Sci Technol. 2022;31(3):035008. doi: 10.1088/1361-6595/ac5452.
  • Sato Y, Ishikawa K, Tsutsumi T, et al. Numerical analysis of coaxial dielectric barrier helium discharges: three-stage mode transitions and internal bullet propagation. Appl Phys Express. 2020;13(8):086001. doi: 10.35848/1882-0786/aba3f2.
  • Liu CT, Kumakura T, Ishikawa K, et al. Effects of assisted magnetic field to an atmospheric-pressure plasma jet on radical generation at the plasma-surface interface and bactericidal function. Plasma Sources Sci Technol. 2016;25(6):065005. doi: 10.1088/0963-0252/25/6/065005.
  • Starikovskiy AY, Aleksandrov NL, Shneider MN. Streamer self-focusing in an external longitudinal magnetic field. Phys Rev E. 2021;103(6):063201. doi: 10.1103/PhysRevE.103.063201.
  • Maho T, Binois R, Brule-Morabito F, et al. Anti-bacterial action of plasma multi-jets in the context of chronic wound healing. Appl Sci. 2021;11(20):9598. doi: 10.3390/app11209598.
  • Hahn V, Grollmisch D, Bendt H, et al. Concept for improved handling ensures effective contactless plasma treatment of patients with kINPen®MED. Appl Sci. 2020;10(17):6133. doi: 10.3390/app10176133.
  • Gong X, Lin Y, Li X, et al. Decomposition of volatile organic compounds using gliding arc discharge plasma. J Air Waste Manag Assoc. 2020;70(2):138–157. doi: 10.1080/10962247.2019.1698476.
  • Gangoli SP, Gutsol AF, Fridman AA. A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: I. Design and diagnostics. Plasma Sources Sci Technol. 2010;19(6):065003. doi: 10.1088/0963-0252/19/6/065003.
  • Gangoli SP, Gutsol AF, Fridman AA. A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: II. Electrical characterization. Plasma Sources Sci Technol. 2010;19(6):065004. doi: 10.1088/0963-0252/19/6/065004.
  • Rabinovich A, Nirenberg G, Kocagoz S, et al. Scaling up of non-thermal gliding arc plasma systems for industrial applications. Plasma Chem Plasma Process. 2022;42(1):35–50. doi: 10.1007/s11090-021-10203-5.
  • Abdelaziz AA, Teramoto Y, Kim HH. Unveiling the formation and control of unique swirling discharge pattern in helium plasma candle device. J Phys D Appl Phys. 2022;55(6):065201. doi: 10.1088/1361-6463/ac3036.
  • Kim HH, Takeuchi N, Teramoto Y, et al. Plasma candle: a new type of scaled-up plasma jet device. Int J Plasma Environ Sci Technol. 2020;14:e01004. doi: 10.34343/ijpest.2020.14.e01004
  • Iseki S, Nakamura K, Hayashi M, et al. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl Phys Lett. 2012;100(11):113702. doi: 10.1063/1.3694928.
  • Tanaka H, Mizuno M, Ishikawa K, et al. Plasma activated medium selectively kills glioblastoma brain tumor cells by down-regulating a survival signaling molecule, AKT kinase. Plasma Med. 2011;1(3–4):265–277. doi: 10.1615/PlasmaMed.2012006275.
  • Utsumi F, Kajiyama H, Nakamura K, et al. Effect of indirect nonequilibrium atmospheric pressure plasma on antiproliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo. PLOS One. 2013;8(12):e81576. doi: 10.1371/journal.pone.0081576.
  • Nakamura K, Yoshikawa N, Yoshihara M, et al. Adjusted multiple gases in the plasma flow induce differential antitumor potentials of plasma-activated solutions. Plasma Process Polym. 2020;17(10):1900259. doi: 10.1002/ppap.201900259.
  • Iseki S, Hashizume H, Jia FD, et al. Inactivation of Penicillium digitatum spores by a high-density ground-state atomic oxygen-radical source employing an atmospheric-pressure plasma. Appl Phys Express. 2011;4(11):116201. doi: 10.1143/APEX.4.116201.
  • Hashizume H, Ohta T, Jia FD, et al. Inactivation effects of neutral reactive-oxygen species on Penicillium digitatum spores using non-equilibrium atmospheric-pressure oxygen radical source. Appl Phys Lett. 2013;103:153708. doi: 10.1063/1.4824892
  • Hashizume H, Ohta T, Takeda K, et al. Oxidation mechanism of Penicillium digitatum spores through neutral oxygen radicals. Jpn J Appl Phys. 2014;53(1):010209. doi: 10.7567/JJAP.53.010209.
  • Hashizume H, Ohta T, Takeda K, et al. Quantitative clarification of inactivation mechanism of Penicillium digitatum spores treated with neutral oxygen radicals. Jpn J Appl Phys. 2015;54(1S):01AG05. doi: 10.7567/JJAP.54.01AG05.
  • Hashizume H, Ohta T, Hori M, et al. Growth control of Saccharomyces cerevisiae through dose of oxygen atoms. Appl Phys Lett. 2015;107(9):093701. doi: 10.1063/1.4929952.
  • Kobayashi T, Iwata N, Oh JS, et al. Bactericidal pathway of Escherichia coli in buffered saline treated with oxygen radicals. J Phys D Appl Phys. 2017;50(15):155208. doi: 10.1088/1361-6463/aa61d7.
  • Iwata N, Gamaleev V, Oh JS, et al. Investigation on the long-term bactericidal effect and chemical composition of radical-activated water. Plasma Process Polym. 2019;16(10):1900055. doi: 10.1002/ppap.201900055.
  • Tanaka Y, Oh JS, Hashizume H, et al. Atomic oxygen radical-induced intracellular oxidization of mould spore cells. Plasma Process Polym. 2020;17(10):2000001. doi: 10.1002/ppap.202000001.
  • Hori Y, Iwata N, Gamaleev V, et al. Identification of key neutral species in atmospheric-pressure plasma for promoting proliferation of fibroblast cells. Plasma Process Polym. 2021;18(4):2000225. doi: 10.1002/ppap.202000225.
  • Taylor GW. The use of electrosurgery in the treatment of cancer. N Engl J Med. 1929;200(3):110–111. doi: 10.1056/NEJM192901172000304.
  • Link WJ, Glover JL, Edwards JL, et al. Wound healing of mouse skin incised with a plasma scalpel. J Surg Res. 1973;14(6):505–511. doi: 10.1016/0022-4804(73)90120-0.
  • Storek D, Grund KE, Gronbach G, et al. Endoscopic argon gas coagulation–initial clinical experiences. Z Gastroenterol. 1993;31:675.
  • Stoffels E, Flikweert AJ, Stoffels WW, et al. Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio) materials. Plasma Sources Sci Technol. 2002;11(4):383–388. doi: 10.1088/0963-0252/11/4/304.
  • Kalghatgi SU, Fridman G, Cooper M, et al. Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma. IEEE Trans Plasma Sci. 2007;35(5):1559–1566. doi: 10.1109/TPS.2007.905953.
  • Shimizu T, Steffes B, Pompl R, et al. Characterization of microwave plasma torch for decontamination. Plasma Process Polym. 2008;5(6):577–582. doi: 10.1002/ppap.200800021.
  • von Woedtke T, Junger M, Kocher T, et al. Plasma medicine – therapeutic application of physical plasmas. IFMBE Proceedings of World Congress on Medical Physics and Biomedical Engineering. Vol. 25; Springer; 2009. p. 82.
  • Nagasaki Y, Umeyama M, Iijima M, et al. Design of biointerface by nonequilibrium atmospheric plasma jets – approach from plasma susceptible polymers. J Photopol Sci Technol. 2008;21(2):267–270. doi: 10.2494/photopolymer.21.267.
  • Ikehara Y, Sakakita H, Shimizu N, et al. Formation of membrane-like structures in clotted blood by mild plasma treatment during hemostasis. J Photopol Sci Technol. 2013;26(4):555–557. doi: 10.2494/photopolymer.26.555.
  • Ishikawa K. Perspectives on functional nitrogen science and plasma-based in situ functionalization. Jpn J Appl Phys. 2022;61(SA):SA0802. doi: 10.35848/1347-4065/ac3558.
  • Simeni MS, Zheng YS, Barnat EV, et al. Townsend to glow discharge transition for a nanosecond pulse plasma in helium: space charge formation and resulting electric field dynamics. Plasma Sources Sci Technol. 2021;30(5):055004. doi: 10.1088/1361-6595/abf320.
  • Mirzaee M, Simeni MS, Bruggeman PJ. Electric field dynamics in an atmospheric pressure helium plasma jet impinging on a substrate. Phys Plasma. 2020;27(12):123505. doi: 10.1063/5.0021837.
  • McDonnell C, Irwin R, White S, et al. Optical diagnosis of a kHz-driven helium atmospheric pressure plasma jet. J Plasma Phys. 2022;88(3):905880316. doi: 10.1017/S0022377822000538.
  • Meyer HKH, Marskar R, Mauseth F. Evolution of positive streamers in air over non-planar dielectrics: experiments and simulations. Plasma Sources Sci Technol. 2022;31(11):114006. doi: 10.1088/1361-6595/aca0be.
  • Jansky J, Bessieres D, Brandenburg R, et al. Electric field development in positive and negative streamers on dielectric surface. Plasma Sources Sci Technol. 2021;30(10):105008. doi: 10.1088/1361-6595/ac2043.
  • Shirai N, Uchida S, Tochikubo F, et al. Self-organized anode pattern on surface of liquid or metal anode in atmospheric DC glow discharges. IEEE Trans Plasma Sci. 2011;39(11):2652–2653. doi: 10.1109/TPS.2011.2158324.
  • Marshall SE, Jenkins ATA, Al-Bataineh SA, et al. Studying the cytolytic activity of gas plasma with self-signalling phospholipid vesicles dispersed within a gelatin matrix. J Phys D Appl Phys. 2013;46(18):185401. doi: 10.1088/0022-3727/46/18/185401.
  • Wu KY, Zhao N, Wu JC, et al. Complicated streamer dynamics in petal-like patterns formed on the substrate downstream of an argon plasma jet. Plasma Process Polym. 2022;19(9):2200003. doi: 10.1002/ppap.202200003.
  • Herrmann A, Margot J, Hamdan A. Influence of voltage and gap distance on the dynamics of the ionization front, plasma dots, produced by nanosecond pulsed discharges at water surface. Plasma Sources Sci Technol. 2022;31(4):045006. doi: 10.1088/1361-6595/ac5ec8.
  • Ricchiuto AC, Borghi CA, Cristofolini A, et al. Measurement of the charge distribution deposited on a target surface by an annular plasma synthetic jet actuator: influence of humidity and electric field. J Electrostatic. 2020;107:103501. doi: 10.1016/j.elstat.2020.103501.
  • Starikovskiy AY, Bazelyan EM, Aleksandrov NL. The influence of humidity on positive streamer propagation in long air gap. Plasma Sources Sci Technol. 2022;31(11):114009. doi: 10.1088/1361-6595/aca04c.
  • Feng BW, Panchenko AN, Zhang C, et al. Emission spectra of argon and hydrogen excited by pulses with durations of 0.7 and 160 ns in an inhomogeneous electric field. J Phys D Appl Phys. 2022;55(40):405202. doi: 10.1088/1361-6463/ac83d1.
  • Mirpour S, Nijdam S. Experimental investigation on streamer inception from artificial hydrometeors. Plasma Sources Sci Technol. 2022;31(10):105009. doi: 10.1088/1361-6595/ac95be.
  • Lemetayer J, Marion C, Fabre D, et al. Multi-inception patterns of emitter array/collector systems in DC corona discharge. J Phys D Appl Phys. 2022;55(18):185203. doi: 10.1088/1361-6463/ac4e35.
  • Darny T, Bauville G, Fleury M, et al. Periodic forced flow in a nanosecond pulsed cold atmospheric pressure argon plasma jet. Plasma Sources Sci Technol. 2021;30(10):105021. doi: 10.1088/1361-6595/ac2a18.
  • Adress W, Graham B. Investigation of a non-thermal atmospheric pressure plasma jet in contact with liquids using fast imaging. Plasma Sources Sci Technol. 2021;30(9):095015. doi: 10.1088/1361-6595/abf75d.
  • Orr K, Tang Y, Simeni MS, et al. Measurements of electric field in an atmospheric pressure helium plasma jet by the E-FISH method. Plasma Sources Sci Technol. 2020;29(3):035019. doi: 10.1088/1361-6595/ab6e5b.
  • Orr K, Yang X, Gulko I, et al. Formation and propagation of ionization waves during ns pulse breakdown in plane-to-plane geometry. Plasma Sources Sci Technol. 2020;29(12):125022. doi: 10.1088/1361-6595/aba989.
  • Raskar S, Orr K, Adamovich IV, et al. Spatially enhanced electric field induced second harmonic (SEEFISH) generation for measurements of electric field distributions in high-pressure plasmas. Plasma Sources Sci Technol. 2022;31(8):085002. doi: 10.1088/1361-6595/ac8072.
  • Chng TL, Starikovskaia SM, Schanne-Klein MC. Electric field measurements in plasmas: how focusing strongly distorts the E-FISH signal. Plasma Sources Sci Technol. 2020;29(12):125002. doi: 10.1088/1361-6595/abbf93.
  • Chng TL, Pai DZ, Guaitella O, et al. Effect of the electric field profile on the accuracy of E-FISH measurements in ionization waves. Plasma Sources Sci Technol. 2022;31(1):015010. doi: 10.1088/1361-6595/ac4592.
  • Huang BD, Zhang C, Zhu WC, et al. Ionization waves in nanosecond pulsed atmospheric pressure plasma jets in argon. High Voltage. 2021;6(4):665–673. doi: 10.1049/hve2.12067.
  • Zhu YF, Chen XC, Wu Y, et al. Simulation of ionization-wave discharges: a direct comparison between the fluid model and E-FISH measurements. Plasma Sources Sci Technol. 2021;30(7):075025. doi: 10.1088/1361-6595/ac0714.
  • Li X, Jin SH, Song K, et al. Temporal electric field of a helium plasma jet by electric field induced second harmonic (E-FISH) method. Plasma Sci Technol. 2023;25(1):015402. doi: 10.1088/2058-6272/ac8419.
  • Inada Y, Shioda T, Nakamura R, et al. Systematic 1D electric field induced second harmonic measurement on primary-to-secondary transition phase of positive streamer discharge in atmospheric-pressure air. J Phys D Appl Phys. 2022;55(38):385201. doi: 10.1088/1361-6463/ac7b54.
  • Nakamura S, Sato M, Fujii T, et al. Optimization of beam shaping and error quantification of calibration approach using E-FISHG based electric field measurements. Plasma Sources Sci Technol. 2022;31(11):115020. doi: 10.1088/1361-6595/aca4f1.
  • Yang JY, Barnat EV, Im SK, et al. Spatiotemporally resolved measurements of electric field around a piezoelectric transformer using electric-field induced second harmonic (E-FISH) generation. J Phys D Appl Phys. 2022;55(22):225203. doi: 10.1088/1361-6463/ac406a.
  • Wei ZY, Wu J, Komuro A, et al. Calculation of photoionization rates during streamer discharge using neural networks. IEEE Trans Plasma Sci. 2022;50(12):5051–5059. doi: 10.1109/TPS.2022.3221474.
  • Strobel LR, Martell BC, Morozov A, et al. Electric field measurements of DC-driven positive streamer coronas using the E-FISH method. Appl Phys Lett. 2022;121(11):114102. doi: 10.1063/5.0100941.
  • Kuhfeld J, Lepikhin ND, Luggenholscher D, et al. Vibrational CARS measurements in a near-atmospheric pressure plasma jet in nitrogen: I. Measurement procedure and results. J Phys D Appl Phys. 2021;54(30):305204. doi: 10.1088/1361-6463/abfd6b.
  • Koike T, Muneoka H, Terashima K, et al. Electric-field-induced coherent anti-Stokes Raman scattering of hydrogen molecules in visible region for sensitive field measurement. Phys Rev Lett. 2022;129(3):033202. doi: 10.1103/PhysRevLett.129.033202.
  • Koike T, Muneoka H, Terashima K, et al. Generation of electric-field-induced anti-Stokes Raman scattering in the visible region (E-CARSv) from nitrogen in air. Jpn J Appl Phys. 2023;62(SA):SA1015. doi: 10.35848/1347-4065/ac91db.
  • Lepikhin ND, Luggenholscher D, Czarnetzki U. Electric field measurements in a He: n 2 nanosecond pulsed discharge with sub-ns time resolution. J Phys D Appl Phys. 2021;54(5):055201. doi: 10.1088/1361-6463/abbbb4.
  • Goldberg BM, Hoder T, Brandenburg R. Electric field determination in transient plasmas: in situ & non-invasive methods. Plasma Sources Sci Technol. 2022;31(7):073001. doi: 10.1088/1361-6595/ac6e03.
  • An WDM, Wang Z, Weisenburger A, et al. Laser-induced fluorescence-dip spectroscopy of Rydberg states of xenon for electric field measurement in plasma. Rev Sci Instrum. 2022;93(2):023503. doi: 10.1063/5.0064676.
  • Takeda K, Yamada H, Ishikawa K, et al. Systematic diagnostics of the electrical, optical, and physicochemical characteristics of low-temperature atmospheric-pressure helium plasma sources. J Phys D Appl Phys. 2019;52(16):165202. doi: 10.1088/1361-6463/aaff44.
  • Takeda K, Ishikawa K, Tanaka H, et al. Systematic measurements of O, N, NO, OH and vacuum ultraviolet light generated by an AC-excited atmospheric pressure Ar plasma in open air. J Phys D Appl Phys. 2017;50(19):195202. doi: 10.1088/1361-6463/aa6555.
  • Takeda K, Ishikawa K, Hori M. Wide range applications of process plasma diagnostics using vacuum ultraviolet absorption spectroscopy. Rev Mod Plasma Phys. 2022;6(1):13. doi: 10.1007/s41614-022-00075-3.
  • Hori M. Radical controlled processes. Rev Mod Plasma Phys. 2022;6(1):36. doi: 10.1007/s41614-022-00084-2.
  • Nastuta AV, Gerling T. Cold atmospheric pressure plasma jet operated in Ar and He: from basic plasma properties to vacuum ultraviolet, electric field and safety thresholds measurements in plasma medicine. Appl Sci. 2022;12(2):644. doi: 10.3390/app12020644.
  • Jans ER, Raskar S, Yang X, et al. Kinetics of metastable N2(a 3Σ+u, v) molecules in high-pressure nonequilibrium plasmas. Plasma Sources Sci Technol. 2021;30(2):025003. doi: 10.1088/1361-6595/abcc7c.
  • Invernizzi L, Sadeghi N, Sainct FP, et al. Study of He + 0.2% O2 plasma jet impinging on liquid surface from He(2 3S1) metastable atoms density measurements. Plasma Sources Sci Technol. 2022;31(3):035002. doi: 10.1088/1361-6595/ac4e21.
  • Dhali SK. Generation of excited species in a streamer discharge. AIP Adv. 2021;11(1):015247. doi: 10.1063/5.0033110.
  • Diao ZH, Tan ZY, Lu CQ, et al. Behavior of electrons in the bullet in the Ar/O2 plasma jet in changing oxygen concentration and the applied voltage. IEEE Trans Plasma Sci. 2021;49(9):2642–2652. doi: 10.1109/TPS.2021.3102079.
  • Kanazawa S, Kawano H, Watanabe S, et al. Observation of OH radicals produced by pulsed discharges on the surface of a liquid. Plasma Sources Sci Technol. 2011;20(3):034010. doi: 10.1088/0963-0252/20/3/034010.
  • Kawasaki T, Koga K, Shiratani M. Experimental identification of the reactive oxygen species transported into a liquid by plasma irradiation. Jpn J Appl Phys. 2020;59(11):110502. doi: 10.35848/1347-4065/abc3a1.
  • Brubaker TR, Ishikawa K, Takeda K, et al. Dynamic analysis of reactive oxygen nitrogen species in plasma-activated culture medium by UV absorption spectroscopy. J Appl Phys. 2017;122(21):213301. doi: 10.1063/1.4999256.
  • Brubaker TR, Ishikawa K, Kondo H, et al. Liquid dynamics in response to an impinging low-temperature plasma jet. J Phys D Appl Phys. 2019;52(7):075203. doi: 10.1088/1361-6463/aaf460.
  • Park S, Choe W, Lee H, et al. Stabilization of liquid instabilities with ionized gas jets. Nature. 2021;592(7852):49–53. doi: 10.1038/s41586-021-03359-9.
  • Yokoyama T, Miyazaki S, Akagi H, et al. Kinetics of bacterial inactivation by peroxynitric acid in the presence of organic contaminants. Appl Environ Microbiol. 2021;87(2):e01860-20. doi: 10.1128/AEM.01860-20.
  • Kurake N, Tanaka H, Ishikawa K, et al. Effects of ·OH and ·NO radicals in the aqueous phase on H2O2 and NO2− synthesized in plasma-activated medium. J Phys D. 2017;50:155202. doi: 10.1088/1361-6463/aa5f1d
  • Uchiyama H, Ishikawa K, Zhao QL, et al. Free radical generation by non-equilibrium atmospheric pressure plasma in alcohol–water mixtures: an EPR-spin trapping study. J Phys D Appl Phys. 2018;51(9):095202. doi: 10.1088/1361-6463/aaa885.
  • Liu Y, Ishikawa K, Miron C, et al. Hydrogen peroxide in lactate solutions irradiated by non-equilibrium atmospheric pressure plasma. Plasma Sources Sci Technol. 2021;30(4):04LT03. doi: 10.1088/1361-6595/abbbd4.
  • Tanaka H, Hosoi Y, Ishikawa K, et al. Low temperature plasma irradiation products of sodium lactate solution that induce cell death on U251SP glioblastoma cells were identified. Sci Rep. 2021;11(1):18488. doi: 10.1038/s41598-021-98020-w.
  • Ito D, Iwata N, Ishikawa K, et al. Cytotoxicity of plasma-irradiated lactate solution produced under atmospheric airtight conditions and generation of the methyl amino group. Appl Phys Express. 2022;15(5):056001. doi: 10.35848/1882-0786/ac6360.
  • Liu Y, Ishikawa K, Tanaka H, et al. Organic decomposition and synthesis reactions in lactated solution exposed to nonequilibrium atmospheric pressure plasma. Plasma Process Polym. 2023;20:2200193. doi: 10.1002/ppap.202200193
  • Miron C, Ishikawa K, Kashiwagura S, et al. Cancer-specific cytotoxicity of ringer’s acetate solution irradiated by cold atmospheric pressure plasma. Free Radical Res. 2023;57(2):91–104. doi: 10.1080/10715762.2023.2201390.
  • Jia FD, Sumi N, Ishikawa K, et al. Laser scattering diagnosis of a 60-Hz non-equilibrium atmospheric pressure plasma jet. Appl Phys Express. 2011;4(2):026101. doi: 10.1143/APEX.4.026101.
  • Ishikawa K, Mizuno H, Tanaka H, et al. Real-time in situ electron spin resonance measurements on fungal spores of Penicillium digitatum during exposure of oxygen plasmas. Appl Phys Lett. 2012;101(1):013704. doi: 10.1063/1.4733387.
  • Takeda K, Kato M, Jia FD, et al. Effect of gas flow on transport of O (3Pj) atoms produced in ac power excited non-equilibrium atmospheric-pressure O2/Ar plasma jet. J Phys D Appl Phys. 2013;46(46):464006. doi: 10.1088/0022-3727/46/46/464006.
  • Jia FD, Ishikawa K, Takeda T, et al. Spatiotemporal behaviors of absolute density of atomic oxygen in a planar type of Ar/O2 non-equilibrium atmospheric-pressure plasma jet. Plasma Sources Sci Technol. 2014;23(2):025004. doi: 10.1088/0963-0252/23/2/025004.
  • Kurake N, Tanaka H, Ishikawa K, et al. Cell survival of glioblastoma grown in medium containing hydrogen peroxide and/or nitrite, or in plasma-activated medium. Arch Biochem Biophys. 2016;605:102–108. doi: 10.1016/j.abb.2016.01.011.
  • Kurake N, Ishikawa K, Tanaka H, et al. Non-thermal plasma-activated medium modified metabolomic profiles in the glycolysis of U251SP glioblastoma. Arch Biochem Biophys. 2019;662:83–92. doi: 10.1016/j.abb.2018.12.001.
  • Ishikawa K, Hosoi Y, Tanaka H, et al. Non-thermal plasma-activated lactate solution kills U251SP glioblastoma cells in an innate reductive manner with altered metabolism. Arch Biochem Biophys. 2020;688:108414. doi: 10.1016/j.abb.2020.108414.
  • Shimizu T. Wound treatment by low-temperature atmospheric plasmas and issues in plasma engineering for plasma medicine. Jpn J Appl Phys. 2020;59(12):120501. doi: 10.35848/1347-4065/abc3a0.
  • Sakakita H, Shimizu T, Ikehara Y. Reviews of low-temperature atmospheric pressure plasma for studying hemostasis and international standardization. Jpn J Appl Phys. 2021;60(2):020502. doi: 10.35848/1347-4065/abd1bb.
  • Akiyama H. Streamer discharges in liquids and their applications. IEEE Trans Dielect Electr Insul. 2000;7(5):646–653. doi: 10.1109/94.879360.
  • Stoffels E, Kieft IE, Sladek REJ. Superficial treatment of mammalian cells using plasma needle. J Phys D Appl Phys. 2003;36(23):2908–2913. doi: 10.1088/0022-3727/36/23/007.
  • Fridman G, Peddinghaus M, Balasubramanian M, et al. Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem Plasma Process. 2006;26(4):425–442. doi: 10.1007/s11090-006-9024-4.
  • Kaushik NK, Uhm H, Choi EH. Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells. Appl Phys Lett. 2012;100:084102. doi: 10.1063/1.3687172
  • Vandamme M, Robert E, Pesnel S, et al. Antitumor effect of plasma treatment on U87 glioma xenografts: preliminary results. Plasma Process Polym. 2010;7(3–4):264–273. doi: 10.1002/ppap.200900080.
  • Lukes P, Dolezalova E, Sisrova I, et al. Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci Technol. 2014;23(1):015019. doi: 10.1088/0963-0252/23/1/015019.
  • Lin A, Truong B, Pappas A, et al. Uniform nanosecond pulsed dielectric barrier discharge plasma enhances anti-tumor effects by induction of immunogenic cell death in tumors and stimulation of macrophages. Plasma Process Polym. 2015;12(12):1392–1399. doi: 10.1002/ppap.201500139.
  • Metelmann HR, Nedrelow DS, Seebauer C, et al. Head and neck cancer treatment and physical plasma. Clin Plasma Med. 2015;3(1):17–23. doi: 10.1016/j.cpme.2015.02.001.
  • Sato T, Yokoyama M, Johkura K. A key inactivation factor of HeLa cell viability by a plasma flow. J Phys D Appl Phys. 2011;44(37):372001. doi: 10.1088/0022-3727/44/37/372001.
  • Tanaka H, Nakamura K, Mizuno M, et al. Non-thermal atmospheric pressure plasma activates lactate in ringer’s solution for anti-tumor effects. Sci Rep. 2016;6:36282. doi: 10.1038/srep36282.
  • Jiang L, Zheng H, Lyu Q, et al. Lysosomal nitric oxide determines transition from autophagy to ferroptosis after exposure to plasma-activated ringer’s lactate. Redox Biol. 2021;43:101989. doi: 10.1016/j.redox.2021.101989.
  • Tanaka H, Mizuno M, Katsumata Y, et al. Oxidative stress-dependent and -independent death of glioblastoma cells induced by non-thermal plasma-exposed solutions. Sci Rep. 2019;9(1):13657. doi: 10.1038/s41598-019-50136-w.
  • Nagaya M, Hara H, Kamiya T, et al. Inhibition of NAMPT markedly enhances plasma-activated medium-induced cell death in human breast cancer MDA-MB-231 cells. Arch Biochem Biophys. 2019;676:108155. doi: 10.1016/j.abb.2019.108155.
  • Tanaka H, Maeda S, Nakamura K, et al. Plasma-activated ringer’s lactate solution inhibits the cellular respiratory system in HeLa cells. Plasma Process Polym. 2021;18(10):2100056. doi: 10.1002/ppap.202100056.
  • Yoshikawa N, Liu W, Nakamura K, et al. Plasma-activated medium promotes autophagic cell death along with alteration of the mTOR pathway. Sci Rep. 2020;10(1):1614. doi: 10.1038/s41598-020-58667-3.
  • Nakamura K, Yoshikawa N, Mizuno Y, et al. Preclinical verification of the efficacy and safety of aqueous plasma for ovarian cancer therapy. Cancers. 2021;13(5):1141. doi: 10.3390/cancers13051141.
  • Stockwell BR, Angeli JPF, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–285. doi: 10.1016/j.cell.2017.09.021.
  • Okazaki Y, Tanaka H, Hori M, et al. L-dehydroascorbic acid recycled by thiols efficiently scavenges non-thermal plasma-induced hydroxyl radicals. Arch Biochem Biophys. 2019;669:87–95. doi: 10.1016/j.abb.2019.05.019.
  • Okazaki Y, Tanaka H, Matsumoto K, et al. Non-thermal plasma-induced DMPO-OH yields hydrogen peroxide. Arch Biochem Biophys. 2021;705:108901. doi: 10.1016/j.abb.2021.108901.
  • Miebach L, Freund E, Horn S, et al. Tumor cytotoxicity and immunogenicity of a novel V-jet neon plasma source compared to the kINPen. Sci Rep. 2021;11(1):136. doi: 10.1038/s41598-020-80512-w.
  • Freund E, Liedtke KR, van der Linde J, et al. Physical plasma-treated saline promotes an immunogenic phenotype in CT26 Colon cancer cells in vitro and in vivo. Sci Rep. 2019;9(1):634. doi: 10.1038/s41598-018-37169-3.
  • Witzke K, Seebauer C, Jesse K, et al. Plasma medical oncology: immunological interpretation of head and neck squamous cell carcinoma. Plasma Process Polym. 2020;17(10):1900258. doi: 10.1002/ppap.201900258.
  • Freund E, Miebach L, Clemen R, et al. Large volume spark discharge and plasma jet-technology for generating plasma-oxidized saline targeting colon cancer in vitro and in vivo. J Appl Phys. 2021;129(5):053301. doi: 10.1063/5.0033406.
  • Bekeschus S, Liebelt G, Menz J, et al. Tumor cell metabolism correlates with resistance to gas plasma treatment: the evaluation of three dogmas. Free Radic Biol Med. 2021;167:12–28. doi: 10.1016/j.freeradbiomed.2021.02.035.
  • Wenske S, Lackmann JW, Bekeschus S, et al. Nonenzymatic post-translational modifications in peptides by cold plasma-derived reactive oxygen and nitrogen species. Biointerphases. 2020;15(6):061008. doi: 10.1116/6.0000529.
  • Gandhirajan RK, Endlich N, Bekeschus S. Zebrafish larvae as a toxicity model in plasma medicine. Plasma Process Polym. 2021;18(3):2000188. doi: 10.1002/ppap.202000188.
  • Gjika E, Pal-Ghosh S, Kirschner ME, et al. Combination therapy of cold atmospheric plasma (CAP) with temozolomide in the treatment of U87MG glioblastoma cells. Sci Rep. 2020;10(1):16495. doi: 10.1038/s41598-020-73457-7.
  • Jones O, Cheng X, Murthy SRK, et al. The synergistic effect of canady helios cold atmospheric plasma and a FOLFIRINOX regimen for the treatment of cholangiocarcinoma in vitro. Sci Rep. 2021;11(1):8967. doi: 10.1038/s41598-021-88451-w.
  • Li W, Yu H, Ding D, et al. Cold atmospheric plasma and iron oxide-based magnetic nanoparticles for synergetic lung cancer therapy. Free Radic Biol Med. 2019;130:71–81. doi: 10.1016/j.freeradbiomed.2018.10.429.
  • Yan D, Wang Q, Malyavko A, et al. The anti-glioblastoma effect of cold atmospheric plasma treatment: physical pathway vs. chemical pathway. Sci Rep. 2020;10(1):11788. doi: 10.1038/s41598-020-68585-z.
  • Xu W, Yan D, Sun J, et al. The activation of cancer cells by a nanosecond-pulsed magnetic field generator. J Phys D Appl Phys. 2020;53(12):125401. doi: 10.1088/1361-6463/ab62c1.
  • Wang Q, Malyavko A, Yan D, et al. A comparative study of cold atmospheric plasma treatment, chemical versus physical strategy. J Phys D Appl Phys. 2021;54(9):095207. doi: 10.1088/1361-6463/abc6d5.
  • Zolotukhin DB, Lin L, Gjika E, et al. Continuous-wave plasma-generated electric field in 3D collagen gel during cold atmospheric plasma treatment. Plasma Process Polym. 2019;16(12):1900129. doi: 10.1002/ppap.201900129.
  • Labay C, Hamouda I, Tampieri F, et al. Production of reactive species in alginate hydrogels for cold atmospheric plasma-based therapies. Sci Rep. 2019;9(1):16160. doi: 10.1038/s41598-019-52673-w.
  • Labay C, Roldán M, Tampieri F, et al. Enhanced generation of reactive species by cold plasma in gelatin solutions for selective cancer cell death. ACS Appl Mater Interfaces. 2020;12(42):47256–47269. doi: 10.1021/acsami.0c12930.
  • Tornin J, Mateu-Sanz M, Rodríguez A, et al. Pyruvate plays a main role in the antitumoral selectivity of cold atmospheric plasma in osteosarcoma. Sci Rep. 2019;9(1):10681. doi: 10.1038/s41598-019-47128-1.
  • Tornín J, Villasante A, Solé-Martí X, et al. Osteosarcoma tissue-engineered model challenges oxidative stress therapy revealing promoted cancer stem cell properties. Free Radic Biol Med. 2021;164:107–118. doi: 10.1016/j.freeradbiomed.2020.12.437.
  • Lin A, Truong B, Patel S, et al. Nanosecond-pulsed DBD plasma-generated reactive oxygen species trigger immunogenic cell death in A549 lung carcinoma cells through intracellular oxidative stress. Int J Mol Sci. 2017;18(5):966. doi: 10.3390/ijms18050966.
  • Lin AG, Xiang B, Merlino DJ, et al. Non-thermal plasma induces immunogenic cell death in vivo in murine CT26 colorectal tumors. Oncoimmune. 2018;7(9):e1484978. doi: 10.1080/2162402X.2018.1484978.
  • Miller V, Lin A, Fridman G, et al. Plasma stimulation of migration of macrophages. Plasma Process Polym. 2014;11(12):1193–1197. doi: 10.1002/ppap.201400168.
  • Azzariti A, Iacobazzi RM, Di Fonte R, et al. Plasma-activated medium triggers cell death and the presentation of immune activating danger signals in melanoma and pancreatic cancer cells. Sci Rep. 2019;9(1):4099. doi: 10.1038/s41598-019-40637-z.
  • Turrini E, Laurita R, Simoncelli E, et al. Plasma-activated medium as an innovative anticancer strategy: insight into its cellular and molecular impact on in vitro leukemia cells. Plasma Process Polym. 2020;17(10):2000007. doi: 10.1002/ppap.202000007.
  • Zhang J, Liu D, Zhang H, et al. Influence of liquid coverage on the anticancer effects of a helium plasma jet on 3D tumor spheroids. Plasma Process Polym. 2020;17(7):1900213. doi: 10.1002/ppap.201900213.
  • Zhang J, Li B, Xu S, et al. Study of the anticancer effects of a helium plasma jet combined with four anticancer drugs on 3D bladder tumour spheroids. Plasma Process Polym. 2021;18(5):2000226. doi: 10.1002/ppap.202000226.
  • Zhang H, Zhang J, Xu S, et al. Antitumor effects of hyperthermia with plasma-treated solutions on 3D bladder tumor spheroids. Plasma Process Polym. 2021;18(10):2100070. doi: 10.1002/ppap.202100070.
  • Liu D, Wang Z, Chen Z, et al. Comparison of the anticancer effects between helium plasma jets and electrochemical treatment (EChT). Plasma Process Polym. 2021;18(11):2100087. doi: 10.1002/ppap.202100087.
  • Xu XY, Dai XF, Xiang LJ, et al. Quantitative assessment of cold atmospheric plasma anti-cancer efficacy in triple-negative breast cancers. Plasma Process Polym. 2018;15(8):1800052. doi: 10.1002/ppap.201800052.
  • Edlich F. BCL-2 proteins and apoptosis: recent insights and unknowns. Biochem Biophys Res Commun. 2018;500(1):26–34. doi: 10.1016/j.bbrc.2017.06.190.
  • Yan X, Zhang C, Ouyang J, et al. Atmospheric pressure plasma treatments protect neural cells from ischemic stroke-relevant injuries by targeting mitochondria. Plasma Process Polym. 2020;17(10):2000063. doi: 10.1002/ppap.202000063.
  • Yan D, Talbot A, Nourmohammadi N, et al. Toward understanding the selective anticancer capacity of cold atmospheric plasma–a model based on aquaporins. Biointerphases. 2015;10(4):040801. doi: 10.1116/1.4938020.
  • Liu D, Zhang Y, Xu M, et al. Cold atmospheric pressure plasmas in dermatology: sources, reactive agents, and therapeutic effects. Plasma Process Polym. 2020;17(4):1900218. doi: 10.1002/ppap.201900218.
  • Rasouli M, Mehdian H, Hajisharifi K, et al. Plasma-activated medium induces apoptosis in chemotherapy-resistant ovarian cancer cells: high selectivity and synergy with carboplatin. Plasma Process Polym. 2021;18(9):2100074. doi: 10.1002/ppap.202100074.
  • Bauer G, Sersenová D, Graves DB, et al. Dynamics of singlet oxygen-triggered, RONS-based apoptosis induction after treatment of tumor cells with cold atmospheric plasma or plasma-activated medium. Sci Rep. 2019;9(1):13931. doi: 10.1038/s41598-019-50329-3.
  • Conway GE, He Z, Hutanu AL, et al. Cold atmospheric plasma induces accumulation of lysosomes and caspase-independent cell death in U373MG glioblastoma multiforme cells. Sci Rep. 2019;9(1):12891. doi: 10.1038/s41598-019-49013-3.
  • Adachi T, Tanaka H, Nonomura S, et al. Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network. Free Radic Biol Med. 2015;79:28–44. doi: 10.1016/j.freeradbiomed.2014.11.014.
  • Ma J, Yu KN, Zhang H, et al. Non-thermal plasma induces apoptosis accompanied by protective autophagy via activating JNK/Sestrin2 pathway. J Phys D Appl Phys. 2020;53(46):465201. doi: 10.1088/1361-6463/aba56f.
  • Bourdens M, Jeanson Y, Taurand M, et al. Short exposure to cold atmospheric plasma induces senescence in human skin fibroblasts and adipose mesenchymal stromal cells. Sci Rep. 2019;9(1):8671. doi: 10.1038/s41598-019-45191-2.
  • Chen G, Chen Z, Wen D, et al. Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy. Proc Natl Acad Sci USA. 2020;18:3687. doi: 10.1073/pnas.1917891117
  • Köritzer J, Boxhammer V, Schäfer A, et al. Restoration of sensitivity in chemo—resistant glioma cells by cold atmospheric plasma. PLOS One. 2013;8(5):e64498. doi: 10.1371/journal.pone.0064498.
  • Song CH, Attri P, Ku SK, et al. Cocktail of reactive species generated by cold atmospheric plasma: oral administration induces non-small cell lung cancer cell death. J Phys D Appl Phys. 2021;54(18):185202. doi: 10.1088/1361-6463/abdff2.
  • Zhang H, Xu S, Zhang J, et al. Synergistic anticancer effects of different combinations of He + O2 plasma jet and doxorubicin on A375 melanoma cells. Plasma Process Polym. 2021;18(6):2000239. doi: 10.1002/ppap.202000239.
  • Lee JW, Han SJ, Kang HY, et al. On–off switching of cell cycle and melanogenesis regulation of melanocytes by non-thermal atmospheric pressure plasma-activated medium. Sci Rep. 2019;9(1):13400. doi: 10.1038/s41598-019-50041-2.
  • Lee MH, Lee YS, Kim HJ, et al. Non-thermal plasma inhibits mast cell activation and ameliorates allergic skin inflammatory diseases in NC/Nga mice. Sci Rep. 2019;9(1):13510. doi: 10.1038/s41598-019-49938-9.
  • Liu JR, Gao LG, Wu YM, et al. Low-temperature plasma-activated medium inhibited invasion and metastasis of melanoma cells via suppressing the wnt/β-catenin pathway. Plasma Process Polym. 2020;17(1):1900060. doi: 10.1002/ppap.201900060.
  • Jezeh MA, Tayebi T, Khani MR, et al. Direct cold atmospheric plasma and plasma-activated medium effects on breast and cervix cancer cells. Plasma Process Polym. 2020;17(11):1900241. doi: 10.1002/ppap.201900241.
  • Hajizadeh K, Hajisharifi K, Mehdian H. Morphological risk assessment of cold atmospheric plasma-based therapy: bone marrow mesenchymal stem cells in treatment zone proximity. J Phys D Appl Phys. 2019;52(49):495203. doi: 10.1088/1361-6463/ab3f65.
  • Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25(3):486–541. doi: 10.1038/s41418-017-0012-4.
  • Eto K, Ishinada C, Suemoto T, et al. A novel and distinctive mode of cell death revealed by using non-thermal atmospheric pressure plasma: the involvements of reactive oxygen species and the translation inhibitor Pdcd4. Chem Biol Interact. 2021;338:109403. doi: 10.1016/j.cbi.2021.109403.
  • Zhang H, Zhang J, Ma J, et al. Differential sensitivities of HeLa and MCF-7 cells at G1-, S-, G2- and M-phase of the cell cycle to cold atmospheric plasma. J Phys D Appl Phys. 2020;53(12):125202. doi: 10.1088/1361-6463/ab5e2a.
  • Silva-Teixeira R, Laranjo M, Lopes B, et al. Plasma activated media and direct exposition can selectively ablate retinoblastoma cells. Free Radic Biol Med. 2021;171:302–313. doi: 10.1016/j.freeradbiomed.2021.05.027.
  • Jawaid P, Rehman MU, Zhao QL, et al. Small size gold nanoparticles enhance apoptosis-induced by cold atmospheric plasma via depletion of intracellular GSH and modification of oxidative stress. Cell Death Discov. 2020;6:83. doi: 10.1038/s41420-020-00314-x.
  • Yazdani Z, Biparva P, Rafiei A, et al. Combination effect of cold atmospheric plasma with green synthesized zero-valent iron nanoparticles in the treatment of melanoma cancer model. PLOS One. 2022;17(12):e0279120. doi: 10.1371/journal.pone.0279120.
  • Momeni S, Shanei A, Sazgarnia A, et al. The synergistic effect of cold atmospheric plasma mediated gold nanoparticles conjugated with indocyanine green as an innovative approach to cooperation with radiotherapy. Cell J. 2023;25:51. doi: 10.22074/cellj.2022.559078.1097
  • Mizuno K, Yonetamari K, Shirakawa Y, et al. Anti-tumor immune response induced by nanosecond pulsed streamer discharge in mice. J Phys D Appl Phys. 2017;50(12):12LT01. doi: 10.1088/1361-6463/aa5dbb.
  • Kim JY, Kim SO, Wei Y, et al. Flexible cold microplasma jet using biocompatible dielectric tubes for cancer therapy. Appl Phys Lett. 2010;96:203701.
  • Zirnheld JL, Zucker SN, DiSanto TM, et al. Nonthermal plasma needle: development and targeting of melanoma cells. IEEE Trans Plasma Sci. 2010;38(4):948–952. doi: 10.1109/TPS.2010.2041470.
  • Georgescu N, Lupu AR. Tumoral and normal cells treatment with high-voltage pulsed cold atmospheric plasma jets. IEEE Trans Plasma Sci. 2010;38(8):1949–1955. doi: 10.1109/TPS.2010.2041075.
  • Keidar M, Walk R, Shashurin A, et al. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer. 2011;105(9):1295–1301. doi: 10.1038/bjc.2011.386.
  • Limanowski R, Yan D, Li L, et al. Preclinical cold atmospheric plasma cancer treatment. Cancers. 2022;14(14):3461. doi: 10.3390/cancers14143461.
  • Perrotti V, Caponio A, Muzio VC, et al. Open questions in cold atmospheric plasma treatment in head and neck cancer: a systematic review. Int J Mol Sci. 2022;23(18):10238. doi: 10.3390/ijms231810238.
  • Metelmann HR, Seebauer C, Miller V, et al. Clinical experience with cold plasma in the treatment of locally advanced head and neck cancer. Clin. Plasma Med. 2018;9:6–13. doi: 10.1016/j.cpme.2017.09.001.
  • Schuster M, Seebauer C, Rutkowski R, et al. Visible tumor surface response to physical plasma and apoptotic cell kill in head and neck cancer. J Craniomaxillofac Surg. 2016;44(9):1445–1452. doi: 10.1016/j.jcms.2016.07.001.
  • Schuster M, Rutkowski R, Hauschild A, et al. Side effects in cold plasma treatment of advanced oral cancer – clinical data and biological interpretation. Clin Plasma Med. 2018;10:9–15. doi: 10.1016/j.cpme.2018.04.001.
  • Dai X, Wei B, He Y, et al. Postoperative efficacy of low-temperature plasma radiofrequency ablation in elderly patients with laryngeal carcinoma and its influences on tumor markers and COX-2 and VEGF expressions in laryngeal carcinoma tissues. J Buon. 2020;25:1969–1975.
  • Yoshikawa N, Nakamura K, Kajiyama H. Current understanding of plasma-activated solutions for potential cancer therapy. Free Radical Res. 2023;57(2):69–80. doi: 10.1080/10715762.2023.2193308.
  • Murillo D, Huergo C, Gallego B, et al. Exploring the use of cold atmospheric plasma to overcome drug resistance in cancer. Biomedicines. 2023;11(1):208. doi: 10.3390/biomedicines11010208.
  • Lin A, De Backer J, Quatannens D, et al. The effect of local non-thermal plasma therapy on the cancer-immunity cycle in a melanoma mouse model. Bioeng Transl Med. 2022;7:10314. doi: 10.1002/btm2.10314
  • Bekeschus S, Clemen R. Plasma, cancer, immunity. J Phys D Appl Phys. 2022;55(47):473003. doi: 10.1088/1361-6463/ac9398.
  • Tanaka H, Bekeschus S, Yan DY, et al. Plasma-treated solutions (PTS) in cancer therapy. Cancers. 2021;13(7):1737. doi: 10.3390/cancers13071737.
  • Kondo T, Qing-Li Z, Mizukami T, et al. Hyperthermia-induced cell death – from apoptosis to new stage on cell death. Thermal Med. 2021;37(3):63–77. doi: 10.3191/thermalmed.37.63.
  • Dubey SK, Dabholkar N, Pal UN, et al. Emerging innovations in cold plasma therapy against cancer: a paradigm shift. Drug Discov Today. 2022;27(9):2425–2439. doi: 10.1016/j.drudis.2022.05.014.
  • Faramarzi F, Zafari P, Alimohammadi M, et al. Cold physical plasma in cancer therapy: mechanisms, signaling, and immunity. Oxid Med Cell Longev. 2021;2021:9916796. doi: 10.1155/2021/9916796