53
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Biocompatibility assessment of bovine serum albumin conjugated manganese dioxide nanoparticle and their therapeutic role against microwave radiation induced haematological toxicity in male Wistar rats

, , , &
Pages 194-216 | Received 25 Aug 2023, Accepted 24 Jan 2024, Published online: 02 Apr 2024

References

  • Singh R, Nath R, Mathur AK, et al. Effect of radiofrequency radiation on reproductive health. Indian J Med Res. 2018;148(Suppl):s92–S99. doi: 10.4103/ijmr.IJMR_1056_18.
  • Zhi WJ, Wang LF, Hu XJ. Recent advances in the effects of microwave radiation on brains. Mil Med Res. 2017;4(1):29. doi: 10.1186/s40779-017-0139-0.
  • Statista. Number of mobile (cellular) subscriptions worldwide from 1993 to 2022. 2022; [cited 2023 Jun 05]. Available from: https://www.statista.com/statistics/262950/global-mobile-subscriptions-since-1993/.
  • Miller AB, Sears ME, Morgan LL, et al. Risks to health and well-being from radio-frequency radiation emitted by cell phones and other wireless devices. Front Public Health. 2019;7:223. doi: 10.3389/fpubh.2019.00223.
  • Singh KV, Gautam R, Meena R, et al. Effect of mobile phone radiation on oxidative stress, inflammatory response, and contextual fear memory in Wistar rat. Environ Sci Pollut Res Int. 2020;27(16):19340–19351. doi: 10.1007/s11356-020-07916-z.
  • Gautam R, Priyadarshini E, Nirala JP, et al. Modulatory effects of punica granatum L juice against 2115 MHz (3G) radiation-induced reproductive toxicity in male Wistar rat. Environ Sci Pollut Res Int. 2021;28(39):54756–54765. doi: 10.1007/s11356-021-14378-4.
  • Sani A, Labaran MM, Dayyabu B. Effects of electromagnetic radiation of mobile phones on hematological and biochemical parameters in male albino rats. Eur J Exp Bio. 2018;08(02):11. doi: 10.21767/2248-9215.100052.
  • Christopher B, Sheena Mary Y, Khandaker MU, et al. Effects of mobile phone radiation on certain hematological parameters. Radiat Phys Chem. 2020;166:108443. doi: 10.1016/j.radphyschem.2019.108443.
  • Azizan A, Samsudin AA, Shamshul Baharin MB, et al. Cellulosic fiber nanocomposite application review with zinc oxide antimicrobial agent nanoparticle: an opt for COVID-19 purpose. Environ Sci Pollut Res Int. 2022;30(7):16779–16796. doi: 10.1007/s11356-022-18515-5.
  • Pardhiya S, Rajamani P. Role of nanoparticles in targeted drug delivery system. Nanotech Drug Del. 2014;2:21–51.
  • Ajith MP, Aswathi M, Priyadarshini E, et al. Recent innovations of nanotechnology in water treatment: a comprehensive review. Bioresour Technol. 2021;342:126000. doi: 10.1016/J.BIORTECH.2021.126000.
  • Ajith MP, Pardhiya S, Rajamani P. Carbon dots: an excellent fluorescent probe for contaminant sensing and remediation. Small. 2022b;18(15):e2105579. doi: 10.1002/smll.202105579.
  • Ajith MP, Pardhiya S, Prabhakar AK, et al. Ag@CDs nanohybrid: fabrication, design of a multi-mode chemosensory probe for selective Fe3+ detection and logic gate operation. Chemosphere. 2022a;303(Pt 3):135090. doi: 10.1016/j.chemosphere.2022.135090.
  • Valgimigli L, Baschieri A, Amorati R. Antioxidant activity of nanomaterials. J Mater Chem B. 2018;6(14):2036–2051. doi: 10.1039/C8TB00107C.
  • Nash KM, Ahmed S. Nanomedicine in the ROS-mediated pathophysiology: applications and clinical advances. Nanomedicine. 2015;11(8):2033–2040. doi: 10.1016/j.nano.2015.07.003.
  • Mariam J, Sivakami S, Dongre PM. Albumin corona on nanoparticles–A strategic approach in drug delivery. Drug Deliv. 2016;23(8):2668–2676. doi: 10.3109/10717544.2015.1048488.
  • Khullar P, Singh V, Mahal A, et al. Bovine serum albumin bioconjugated gold nanoparticles: synthesis, hemolysis, and cytotoxicity toward cancer cell lines. J Phys Chem C. 2012;116(15):8834–8843. doi: 10.1021/jp300585d.
  • Pardhiya S, Gautam R, Nirala JP, et al. Modulatory role of bovine serum albumin conjugated manganese dioxide nanoparticle on microwave radiation induced alterations in reproductive parameters of rat. Reprod Toxicol. 2022;113:136–149. doi: 10.1016/j.reprotox.2022.09.003.
  • Pardhiya S, Priyadarshini E, Rajamani P. In vitro antioxidant activity of synthesized BSA conjugated manganese dioxide nanoparticles. SN Appl Sci. 2020b;2(9):1–12. doi: 10.1007/s42452-020-03407-5.
  • Okechukwu CE. Does the use of mobile phone affect male fertility? A mini-review. J Hum Reprod Sci. 2020;13(3):174–183. doi: 10.4103/jhrs.JHRS_126_19.
  • Imai N, Kawabe M, Hikage T, et al. Effects on rat testis of 1.95-GHz W-CDMA for IMT-2000 cellular phones. Syst Biol Reprod Med. 2011;57(4):204–209. doi: 10.3109/19396368.2010.544839.
  • Porwal M, Khan NA, Maheshwari KK. Evaluation of acute and subacute oral toxicity induced by ethanolic extract of marsdenia tenacissima leaves in experimental rats. Sci Pharm. 2017;85(3):29. doi: 10.3390/scipharm85030029.
  • Gaharwar US, Meena R, Rajamani P. Biodistribution, clearance and morphological alterations of intravenously administered iron oxide nanoparticles in male Wistar rats. Int J Nanomed. 2019;14:9677–9692. doi: 10.2147/IJN.S223142.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–254. doi: 10.1016/0003-2697(76)90527-3.
  • Beyer WF, Fridovich I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem. 1987;161(2):559–566. doi: 10.1016/0003-2697(87)90489-1.
  • Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47(2):389–394. doi: 10.1016/0003-2697(72)90132-7.
  • Hadwan MH. New method for assessment of serum catalase activity. Indian J Sci Technol. 2016;9(4):1–5. doi: 10.17485/ijst/2016/v9i4/80499.
  • Sadeghnia HR, Shaterzadeh H, Forouzanfar F, et al. Neuroprotective effect of safranal, an active ingredient of crocus sativus, in a rat model of transient cerebral ischemia. Folia Neuropathol. 2017;55(3):206–213. doi: 10.5114/fn.2017.70485.
  • Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem. 1996;239(1):70–76. doi: 10.1006/abio.1996.0292.
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–358. doi: 10.1016/0003-2697(79)90738-3.
  • Durney CH, Iskander MF, Massoudi H, et al. An empirical formula for broad-band SAR calculations of prolate spheroidal models of humans and animals. IEEE Trans Microwave Theory Tech. 1979;27(8):758–763. doi: 10.1109/TMTT.1979.1129720.
  • Dodge JT, Mitchell C, Hanahan DJ. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963;100(1):119–130. doi: 10.1016/0003-9861(63)90042-0.
  • Paulraj R, Behari J. Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutat Res. 2006;596(1–2):76–80. doi: 10.1016/j.mrfmmm.2005.12.006.
  • Al-Doaiss AA, Ali D, Ali BA, et al. Renal histological alterations induced by acute exposure of titanium dioxide nanoparticles. Int J Morphol. 2019;37(3).1049–1057. doi: 10.4067/S0717-9502201900030:.
  • Ibrahim KE, Al-Mutary MG, Bakhiet AO, et al. Histopathology of the liver, kidney, and spleen of mice exposed to gold nanoparticles. Molecules. 2018;23(8):1848. doi: 10.3390/molecules23081848.
  • Zhou X, Zhao L, Luo J, et al. The toxic effects and mechanisms of nano-Cu on the spleen of rats. Int J Mol Sci. 2019;20(6):1469. doi: 10.3390/ijms20061469.
  • Yu Y, Li Y, Wang W, et al. Acute toxicity of amorphous silica nanoparticles in intravenously exposed ICR mice. PLoS One. 2013;8(4):e61346. doi: 10.1371/journal.pone.0061346.
  • Wan R, Mo Y, Zhang Z, et al. Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part Fibre Toxicol. 2017;14(1):38. doi: 10.1186/s12989-017-0219-z.
  • Alexis F, Pridgen E, Molnar LK, et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–515. doi: 10.1021/mp800051m.
  • Qin F, Shen T, Li J, et al. SF-1 mediates reproductive toxicity induced by cerium oxide nanoparticles in male mice. J Nanobiotech. 2019;17(1):41. doi: 10.1186/s12951-019-0474-2.
  • Thakur M, Gupta H, Singh D, et al. Histopathological and ultra structural effects of nanoparticles on rat testis following 90 days (chronic study) of repeated oral administration. J Nanobiotech. 2014;12(1):42. doi: 10.1186/s12951-014-0042-8.
  • Jenita J, Wilson B, Chocalingam V. Albumin nanoparticles coated with polysorbate 80 as a novel drug carrier for the delivery of antiretroviral drug-Efavirenz. Int J Pharm Investig. 2014;4(3):142–148. doi: 10.4103/2230-973x.138348.
  • Garza-Ocañas L, Ferrer DA, Burt J, et al. Biodistribution and long-term fate of silver nanoparticles functionalized with bovine serum albumin in rats. Metallomics. 2010;2(3):204–210. doi: 10.1039/b916107d.
  • Ulrich K, Jakob U. The role of thiols in antioxidant systems. Free Radic Biol Med. 2019;140:14–27. doi: 10.1016/j.freeradbiomed.2019.05.035.
  • Khorrami MB, Sadeghnia HR, Pasdar A, et al. Antioxidant and toxicity studies of biosynthesized cerium oxide nanoparticles in rats. Int J Nanomed. 2019;14:2915–2926. doi: 10.2147/IJN.S194192.
  • Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–627. doi: 10.1126/science.111439.
  • Singh SP, Kumari M, Kumari SI, et al. Toxicity assessment of manganese oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral exposure. J Appl Toxicol. 2013;33(10):1165–1179. doi: 10.1002/jat.2887.
  • Yousefalizadegan N, Mousavi Z, Rastegar T, et al. Reproductive toxicity of manganese dioxide in forms of micro- and nanoparticles in male rats. Int J Reprod Biomed. 2019;17(5):361–370.). doi: 10.18502/ijrm.v17i5.4603.
  • Pardhiya S, Gaharwar US, Gautam R, et al. Cumulative effects of manganese nanoparticle and radiofrequency radiation in male Wistar rats. Drug Chem Toxicol. 2020a;45(3):1395–1407. doi: 10.1080/01480545.2020.1833905.
  • Rajamani P, Ajith MP, Gautam R. Impact of metal and metal oxide nanoparticles on male reproductive system: a comprehensive review. IJBB. 2022;59(11):1048–1055. doi: 10.56042/ijbb.v59i11.67292.
  • Pitchai K, Chen J, Birla S, et al. Modeling microwave heating of frozen mashed potato in a domestic oven incorporating electromagnetic frequency spectrum. J Food Eng. 2016;173:124–131. doi: 10.1016/j.jfoodeng.2015.11.002.
  • Özsobacı NP, Ergün DD, Tunçdemir M, et al. Protective effects of zinc on 2.45 ghz electromagnetic radiation-induced oxidative stress and apoptosis in HEK293 cells. Biol Trace Elem Res. 2020;194(2):368–378. doi: 10.1007/s12011-019-01811-6.
  • Gupta V, Srivastava R. 2.45 GHz microwave radiation induced oxidative stress: role of inflammatory cytokines in regulating male fertility through estrogen receptor alpha in Gallus gallus domesticus. Biochem Biophys Res Commun. 2022;629:61–70. doi: 10.1016/j.bbrc.2022.09.009.
  • Shahin S, Mishra V, Singh SP, et al. 2.45-GHz microwave irradiation adversely affects reproductive function in male mouse, Mus musculus by inducing oxidative and nitrosative stress. Free Radic Res. 2014;48(5):511–525. doi: 10.3109/10715762.2014.888717.
  • World Health Organization. Radiation: Microwave ovens. 2005; Available from: https://www.who.int/news-room/questions-and-answers/item/radiation-microwave-ovens.
  • Kumari P, Manjula SD, Gautham K. In vitro study of effect of radiation emitted by mobile phone on osmotic fragility and other blood parameters. Res J Pharm Biol Chem Sci. 2016;7(4):1283–1292.
  • Sedehi Esfahani M, Radmehr B, Kohbodi A. Detection of probable effects of microwave exposure of blood parameters of RBC, PCV and Hb in rat. Pak J Biol Sci. 2007;10(24):4567–4569. doi: 10.3923/pjbs.2007.4567.4569.
  • Hashim SW, Al-Uboody H. Effect of mobile phone electromagnetic waves on the hematological and biochemical parameters in laboratory mice (Mus musculus). Basrah J Veterinary Res. 2015;14(2):250–264.
  • Mousavy SJ, Riazi GH, Kamarei M, et al. Effects of mobile phone radiofrequency on the structure and function of the normal human hemoglobin. Int J Biol Macromol. 2019;44(3):278–285. doi: 10.1016/j.ijbiomac.2009.01.001.
  • Muehsam D, Lalezari P, Lekhraj R, et al. Non-thermal radio frequency and static magnetic fields increase rate of hemoglobin deoxygenation in a cell-free preparation. PLoS One. 2013;8(4):e61752. doi: 10.1371/journal.pone.0061752.
  • Yinhui P, Hui G, Lin L, et al. Effect of cell phone radiation on neutrophil of mice. Int J Radiat Biol. 2019;95(8):1178–1184. doi: 10.1080/09553002.2019.1607605.
  • Eid FA, El-Gendy AM, Zahkouk SA, et al. Ameliorative effect of two antioxidants on the liver of male albino rats exposed to electromagnetic field. EJHM. 2015;58(1):74–93. doi: 10.12816/0009363.
  • Gautam R, Singh N, Singh U. Hematological changes induced by 3G mobile phone radiation in male Wistar rats. J Adv Sch Res Allied Educ. 2018;15(5):124–127. doi: 10.29070/15/57557.
  • Dasdag S, Sert C, Akdag Z, et al. Effects of extremely low frequency electromagnetic fields on hematologic and immunologic parameters in welders. Arch Med Res. 2002;33(1):29–32. doi: 10.1016/S0188-4409(01)00337-X.
  • Hardell L, Carlberg M, Hedendahl LK. Radiofrequency radiation from nearby base stations gives high levels in an apartment in Stockholm, Sweden: a case report. Oncol Lett. 2018;15(5):7871–7883. doi: 10.3892/ol.2018.8285.
  • Mortaz E, Alipoor SD, Adcock IM, et al. Update on neutrophil function in severe inflammation. Front Immunol. 2018;9:2171. doi: 10.3389/fimmu.2018.02171.
  • Berek C. Eosinophils: important players in humoral immunity. Clin Exp Immunol. 2016;183(1):57–64. doi: 10.1111/cei.12695.
  • Jhuang YH, Kao TW, Peng TC, et al. Neutrophil to lymphocyte ratio as predictor for incident hypertension: a 9-year cohort study in Taiwan. Hypertens Res. 2019;42(8):1209–1214. doi: 10.1038/s41440-019-0245-3.
  • Seo JY, Suh CH, Jung JY, et al. The neutrophil-to-lymphocyte ratio could be a good diagnostic marker and predictor of relapse in patients with adult-onset still’s disease: a STROBE-compliant retrospective observational analysis. Medicine (Baltimore). 2017;96(29):e7546. doi: 10.1097/MD.0000000000007546.
  • Rifat F, Saxena VK, Srivastava P, et al. Effects of 10 GHz MW exposure on hematological changes in Swiss albino mice and their modulation by prunus domestica fruit extract. Intern J Adv Res. 2014;2(2):386–396. doi: 10.1615/jenvironpatholtoxicoloncol.2013007891.
  • Usman AD, Wan Ahmad WF, Ab Kadir MZA, et al. Effect of radiofrequency electromagnetic field exposure on hematological parameters of mice. World Appl Sci J. 2012;16(5):656–664.
  • Marzook EA, Marzook FA. Glutathione enhancer protects some biochemical and haematological parameters from the effect of electromagnetic field. Egypt J Rad Sci Appl. 2016;29(1–2):33–48. doi: 10.21608/ejrsa.2016.1577.
  • Oloyede H, Atiq Z, Adigun R, et al. Protective effects of a locally-manufactured device on electromagnetic radiation-induced cellular alterations in rats exposed to mobile phone radiation. J Invest Biochem. 2017;6(1):11. doi: 10.5455/jib.20170215105236.
  • Moradpour R, Shokri M, Abedian S, et al. F. The protective effect of melatonin on liver damage induced by mobile phone radiation in mice model. Int J Radiat Res. 2020;18(1):133–141. doi: 10.18869/acadpub.ijrr.18.1.133.
  • Kumar J. Pathophysiology of ischemic acute tubular necrosis. Clin Queries Nephrol. 2012;1(1):18–26. doi: 10.1016/s2211-9477(11)70006-1.
  • Lotfi SA. Effect of electromagnetic radiation emitted from a mobile phone station on biochemical and histological structure of some rat organs. Isotope Radiation Res. 2011;43(1):95–103.
  • Small DM, Gobe GC. Oxidative stress and antioxidant therapy in chronic kidney and cardiovascular disease. In: Oxidative stress and chronic degenerative diseases – a role for antioxidants. London, UK: Intech Open; 2013.
  • Bin-Meferij MM, El-Kott AF. The radioprotective effects of Moringa oleifera against mobile phone electromagnetic radiation-induced infertility in rats. Int J Clin Exp Med. 2015;8(8):12487–12497.
  • Moustafa YM, Moustafa RM, Belacy A, et al. Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes. J Pharm Biomed Anal. 2001;26(4):605–608. doi: 10.1016/S0731-7085(01)00492-7.
  • Dasdag S, Bilgin HM, Akdag MZ, et al. Effect of long term mobile phone exposure on oxidative-antioxidative processes and nitric oxide in rats. Biotechnol Biotechnol Equip. 2008;22(4):992–997. doi: 10.1080/13102818.2008.10817595.
  • Winklhofer‐Roob BM. Oxygen free radicals and antioxidants in cystic fibrosis: the concept of an oxidant‐antioxidant imbalance. Acta Pædiatrica. 1994;83(s395):49–57. doi: 10.1111/j.1651-2227.1994.tb13229.x.
  • Møller P, Wallin H, Knudsen LE. Oxidative stress associated with exercise, psychological stress and life-style factors. Chem Biol Interact. 1996;102(1):17–36. doi: 10.1016/0009-2797(96)03729-5.
  • Pompella A. Biochemistry and histochemistry of oxidant stress and lipid peroxidation. Int J Vitam Nutr Res. 1997;67(5):289–297.
  • Smith-Roe SL, Wyde ME, Stout MD, et al. Evaluation of the genotoxicity of cell phone radiofrequency radiation in male and female rats and mice following subchronic exposure. Environ Mol Mutagen. 2020;61(2):276–290. doi: 10.1002/em.22343.
  • Mohamed WA, Ismail SA, El-Hakim YMA. Spirulina platensis ameliorative effect against GSM 900-MHz cellular phone radiation-induced genotoxicity in male Sprague-Dawley rats. Comp Clin Pathol. 2014;23(6):1719–1726. doi: 10.1007/s00580-014-2003-x.
  • Gandhi, G, Anita. Genetic damage in mobile phone users: some preliminary findings. Indian J Hum Genet. 2005;11(2):99–104. doi: 10.4103/0971-6866.16810.
  • Garaj-Vrhovac V, Gajski G, Pažanin S, et al. Assessment of cytogenetic damage and oxidative stress in personnel occupationally exposed to the pulsed microwave radiation of marine radar equipment. Int J Hyg Environ Health. 2011;214(1):59–65. doi: 10.1016/j.ijheh.2010.08.003.
  • Baohong W, Jiliang H, Lifen J, et al. Studying the synergistic damage effects induced by 1.8 GHz radiofrequency field radiation (RFR) with four chemical mutagens on human lymphocyte DNA using comet assay in vitro. Mutat Res. 2005;578(1–2):149–157. doi: 10.1016/j.mrfmmm.2005.05.001.
  • Baohong W, Lifen J, Lanjuan L, et al. Evaluating the combinative effects on human lymphocyte DNA damage induced by ultraviolet ray C plus 1.8 GHz microwaves using comet assay in vitro. Toxicology. 2007;232(3):311–316. doi: 10.1016/j.tox.2007.01.019.
  • Waldmann P, Bohnenberger S, Greinert R, et al. Influence of GSM signals on human peripheral lymphocytes: study of genotoxicity. Radiat Res. 2013;179(2):243–253. doi: 10.1667/RR2914.1.
  • Zeni O, Schiavoni A, Perrotta A, et al. Evaluation of genotoxic effects in human leukocytes after in vitro exposure to 1950 MHz UMTS radiofrequency field. Bioelectromagnetics. 2008;29(3):177–184. doi: 10.1002/bem.20378.
  • Tiwari R, Lakshmi NK, Surender V, et al. Combinative exposure effect of radio frequency signals from CDMA mobile phones and aphidicolin on DNA integrity. Electromagn Biol Med. 2008;27(4):418–425. doi: 10.1080/15368370802473554.
  • Stronati L, Testa A, Moquet J, et al. 935 MHz cellular phone radiation. An in vitro study of genotoxicity in human lymphocytes. Int J Radiat Biol. 2006;82(5):339–346. doi: 10.1080/09553000600739173.
  • Schwarz C, Kratochvil E, Pilger A, et al. Radiofrequency electromagnetic fields (UMTS, 1,950 MHz) induce genotoxic effects in vitro in human fibroblasts but not in lymphocytes. Int Arch Occup Environ Health. 2008;81(6):755–767. doi: 10.1007/s00420-008-0305-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.