118
Views
66
CrossRef citations to date
0
Altmetric
Original Article

Analysis of the oxidative stress response of Penicillium chrysogenum to menadione

, &
Pages 125-132 | Received 20 Aug 1998, Published online: 07 Jul 2009

References

  • Hyde S.M., Wood P.M. A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana: Fe(III) reduction by cellobiose dehydrogenase and Fe(II) oxidation at a distance from the hyphae. Microbiology 1997; 143: 259–266
  • Urzúa U., Kersten P.J., Vicuña R. Manganese peroxidase-dependent oxidation of glyoxylic and oxalic acids synthesized by Ceriporiopsis subvermispora. Applied and Environmental Microbiology 1998; 64: 68–73
  • Murphy J.W. Mechanisms of natural resistance to human pathogenic fungi. Annual Review of Microbiology 1991; 45: 509–538
  • Levine A., Tenhaken R., Dixon R., Lamb C.J. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 1994; 79: 583–593
  • Crueger A., Crueger W. Glucose transforming enzymes. Microbial Enzymes and Biotechnology, W.M. Fogarty, C.T. Kelly. Elsevier Applied Science, London 1990; 177–226, In
  • Henriksen C.M., Nielsen J., Villadsen J. Influence of the dissolved oxygen concentration on the penicillin biosynthetic pathway in steady-state cultures of Penicillium chrysogenum. Biotechnology Progress 1997; 13: 776–782
  • Emri T., Pócsi I., Szentirmai A. Phenoxyacetic acid induces glutathione-dependent detoxification and depletes the glutathione pool in Penicillium chrysogenum. Journal of Basic Microbiology 1997; 37: 181–186
  • Jamieson D.J. The effect of oxidative stress on Saccharomyces cerevisiae. Redox Report 1995; 1: 89–95
  • Lee J., Dawes I.W., Roe J.-H. Adaptive response of Schizosaccharomyces pombe to hydrogen peroxide and menadione. Microbiology 1995; 141: 3127–3132
  • Jamieson D.J., Stephen D.W.S., Terrière E.C. Analysis of the adaptive oxidative stress response of Candida albicans. FEMS Microbiology Letters 1996; 138: 83–88
  • Tran L.-T., Miki T., Kamakura M., Izawa S., Tsujimoto Y., Miyabe S., Inoue Y., Kimura A. Oxidative stress response in yeast: induction of glucose-6-phosphate dehydrogenase by lipid hydroperoxide in Hansenula mrakii. Journal of Fermentation and Bioengineering 1995; 80: 606–609
  • Emri T., Pócsi I., Szentirmai A. Glutathione metabolism and protection against oxidative stress caused by peroxides in Penicillium chrysogenum. Free Radical Biology and Medicine 1997; 23: 809–814
  • Emri T., Bartók G., Szentirmai A. Regulation of specific activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in Penicillium chrysogenum. FEMS Microbiology Letters 1994; 117: 67–70
  • Emri T., Pócsi I., Szentirmai A. Changes in the glutathione (GSH) metabolism of Penicillium chrysogenum grown on different nitrogen sulphur and carbon sources. Journal of Basic Microbiology 1998; 38: 3–8
  • Jaspers C.J., Penninckx M.J. Glutathione metabolism in yeast Saccharomyces cerevisiae. Evidence that γ-glutamyltranspeptidase is a vacuolar enzyme. Biochimie 1984; 66: 71–74
  • Mehdi K., Penninckx M.J. An important role for glutathione and γ-glutamyltranspeptidase in the supply of growth requirements during nitrogen starvation of the yeast Saccharomyces cerevisiae. Microbiology 1997; 143: 1885–1889
  • Pusztahelyi T., Pócsi I., Kozma J., Szentirmai A. Aging of Penicillium chrysogenum cultures under carbon starvation: I: morphological changes and secondary metabolite production. Biotechnology and Applied Biochemistry 1997; 25: 81–86
  • Pusztahelyi T., Pócsi I., Szentirmai A. Aging of Penicillium chrysogenum cultures under carbon starvation: II: protease and N-acetyl-β-D-hexosaminidase production. Biotechnology and Applied Biochemistry 1997; 25: 87–93
  • Chiu D.T.Y., Stults F.H., Tappel A.L. Purification and properties of rat lung soluble glutathione peroxidase. Biochimica et Biophysica Acta 1976; 445: 558–566
  • Pinto M.C., Mata A.M., López-Barea J. Reversible inactivation of Saccharomyces cerevisiae glutathione reductase under reducing conditions. Archives of Biochemistry and Biophysics 1984; 228: 1–12
  • Warholm M., Guthenberg C., von Bahr C., Mannervik B. Glutathione transferases from human liver. Methods in Enzymology 1985; 113: 499–504
  • Roggenkamp R., Sahm H., Wagner F. Microbial assimilation of methanol. Induction and function of catalase in Candida boidinii. FEBS Letters 1974; 41: 283–286
  • Murata K., Tani K., Kato J., Chibata I. Glutathione production by immobilised Saccharomyces cerevisiae cells containing an ATP regeneration system. European Journal of Applied Microbiology and Biotechnology 1981; 11: 72–77
  • Oberley L.W., Spitz D.R. Assay of superoxide dismutase activity in tumour tissue. Methods in Enzymology 1984; 105: 457–464
  • Anderson M.E. Determination of glutathione and glutathione disulphide in biological samples. Methods in Enzymology 1985; 113: 548–555
  • Royall J.A., Ischiropoulos H. Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Archives of Biochemistry and Biophysics 1993; 302: 348–355
  • Carter W.O., Narayanan P.K., Robinson J.P. Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. Journal of Leukocyte Biology 1994; 55: 253–258
  • Peterson G.L. Determination of total protein. Methods in Enzymology 1983; 91: 86–105
  • Kugelman A., Choy H.A., Liu R., Shi M.M., Gozal E., Forman H.J. γ-Glutamyl transpeptidase is increased by oxidative stress in rat alveolar L2 epithelial cells. American Journal of Respiratory Cell and Molecular Biology 1994; 11: 586–592
  • Flattery-O'Brien J., Collinson L.P., Dawes I.W. Saccharomyces cerevisiae has an inducible response to menadione which differs from that to hydrogen peroxide. Journal of General Microbiology 1993; 139: 501–507
  • Lee F.J., Hassan H.M. Biosynthesis of superoxide dismutase in Saccharomyces cerevisiae: effect of paraquat and copper. Journal of Free Radicals in Biology and Medicine 1985; 1: 319–325
  • Natvig D.O., Dvorachek W.H., Jr., Sylvester K. Evolution and biological roles of fungal superoxide dismutases. Metal Ions in Fungi, G. Winkelmann, D.R. Winge. Marcel Dekker, New York 1994; 391–412, In
  • Jamieson D.J., Rivers S.L., Stephen D.W.S. Analysis of Saccharomyces cerevisiae proteins induced by peroxide and superoxide stress. Microbiology 1994; 140: 3277–3283
  • Galiazzo F., Carrì M.T., Ciriolo M.R., Rotilio G. Superoxide dismutases in Saccharomyces cerevisiae. Metal Ions in Fungi, G. Winkelmann, D.R. Winge. Marcel Dekker, New York 1994; 361–390, In
  • Winterbourn C.C. Superoxide as an intracellular radical sink. Free Radical Biology and Medicine 1993; 14: 85–90
  • Grant C.M., MacIver F.H., Dawes I.W. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Current Genetics 1996; 29: 511–515
  • Stephen D.W.S., Jamieson D.J. Glutathione is an important antioxidant molecule in the yeast Saccharomyces cerevisiae. FEMS Microbiology Letters 1996; 141: 207–212
  • Ochi T. Menadione causes increases in the level of glutathione and in the activity of γ-glutamylcysteine synthetase in cultured Chinese hamster V79 cells. Toxicology 1996; 112: 45–55
  • Żadziński R., Maszewski J., Bartosz G. Transport of glutathioneS-conjugates in the yeasts Saccharomyces cerevisiae. Cell Biology International 1996; 20: 325–330
  • Stephen D.W.S., Jamieson D.J. Amino acid-dependent regulation of the Saccharomyces cerevisiae GSH1 gene by hydrogen peroxide. Molecular Microbiology 1997; 23: 203–210
  • Fortuniak A., Żadziński R., Biliński T., Bartosz G. Glutathione depletion in the yeast Saccharomyces cerevisiae. Biochemistry and Molecular Biology International 1996; 38: 901–910
  • Eriksen S.H., Jensen B., Schneider I., Kaasgaard S., Olsen J. Utilization of side-chain precursors for penicillin biosynthesis in a high-producing strain of Penicillium chrysogenum. Applied Microbiology and Biotechnology 1994; 40: 883–887
  • Eriksen S.H., Jensen B., Schneider I., Kaasgaard S., Olsen J. Uptake of phenoxyacetic acid by Penicillium chrysogenum. Applied Microbiology and Biotechnology 1995; 42: 945–950
  • Ramos F.R., López-Nieto M.J., Martín J.F. Isopenicillin N synthetase of Penicillium chrysogenum, an enzyme that converts δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine to isopenicillin N. Antimicrobial Agents and Chemotherapy 1985; 27: 380–387
  • Sanchez S., Flores M.E., Demain A.L. Nitrogen regulation of penicillin and cephalosporin fermentations. Nitrogen Source Control of Microbial Processes, S. Sanchez-Esquivel. CRC Press, Boca Raton 1988; 121–136, In
  • Cohen G., Argaman A., Schreiber R., Mislovati M., Aharonowitz Y. The thioredoxin system of Penicillium chrysogenum and its possible role in penicillin biosynthesis. Journal of Bacteriology 1994; 176: 973–984
  • Chae H.Z., Chung S.J., Rhee S.G. Thioredoxin-dependent peroxide reductase from yeast. Journal of Biological Chemistry 1994; 269: 27670–27678

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.