1,017
Views
683
CrossRef citations to date
0
Altmetric
Original Article

Antioxidant defence mechanisms: From the beginning to the end (of the beginning)

Pages 261-272 | Received 15 Feb 1999, Published online: 07 Jul 2009

References

  • Gilbert D.L. Evolutionary aspects of atmospheric oxygen and organisms. In Handbook of Physiology, Section 4, Environmental Physiology, Vol. 2, M.J. Fregly, C.M. Bratteis. Oxford University Press, UK 1996; 1059–1094
  • Halliwell B., Gutteridge J.M.C. Free Radicals in Biology and Medicinethird edition. Clarendon Press, OxfordUK 1999
  • Halliwell B. Chloroplast Metabolism. Oxford University Press, UK 1984
  • Foyer C.H., Descourvieres P., Kunert K.J. Protection against oxygen radicals. An important defence mechanism studied in transgenic plants. Plant Cell and Environment 1994; 17: 507–523
  • Rice-Evans C.A., Miller N.J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine 1996; 20: 933–956
  • Rice-Evans C.A., Sampson J., Bramley P.M., Holloway D.E. Why do we expect carotenoids to be antioxidants in vivo?. Free Radical Research 1997; 26: 381–398
  • Law M.Y., Charles S.A., Halliwell B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat. Biochemical Journal 1983; 210: 899–903
  • Gerschman R., Gilbert D.L., Nye S.W., Dwyer P., Fenn W.O. Oxygen poisoning and X-irradiation: a mechanism in common. Science 1956; 119: 623–626
  • McCord J.M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (haemocuprein). Journal of Biological Chemistry 1969; 244: 6049–6055
  • McCord J.M., Fridovich I. The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethylsulfoxide and oxygen. Journal of Biological Chemistry 1969; 244: 6056–6063
  • Babior B.M. The respiratory burst oxidase. Current Opinion in Hematology 1995; 2: 55–60
  • Finkel T. Oxygen radicals and signalling. Current Opinion in Cell Biology 1998; 10: 248–253
  • Bielski B.H., Cabelli D.E. Highlights of current research involving superoxide and perhydroxyl radicals in aqueous solutions. International Journal of Radiation Biology 1996; 59: 291–319
  • Liochev S.I. The role of iron-sulfur clusters in in vivo hydroxyl radical production. Free Radical Research 1996; 25: 369–384
  • Gardner P.R., Raineri I., Epstein L.B., White C.W. Superoxide radical and iron modulate aconitase activity in mammalian cells. Journal of Biological Chemistry 1995; 270: 13399–13405
  • Gardner P.R., Nguyen D.D., White C.W. Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proceedings of the National Academy of Sciences of the USA 1994; 91: 12248–12252
  • Beckman J.S., Koppenol W.H. Nitric oxide, superoxide and peroxynitrite: the good, the bad and the ugly. American Journal of Physiology 1996; 271: C1424–C1437
  • Puppo A., Halliwell B. Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Is haemoglobin a biological Fenton reagent?. Biochemical Journal 1988; 249: 185–190
  • Swain J.A., Darley-Usmar V., Gutteridge J.M.C. Peroxynitrite releases copper from caeruloplasmin: implications for atherosclerosis. FEBS Letters 1994; 342: 49–52
  • Symons M.C.R., Gutteridge J.M.C. Free Radicals and Iron. Chemistry, Biology and Medicine. Oxford University Press, OxfordUK 1998
  • Halliwell B., Gutteridge J.M.C. Role of free radicals and catalytic metal ions in human disease: an overview. Methods in Enzymology 1990; 186: 1–85
  • Walling C. Fenton's reagent revisited. Accounts of Chemical Research 1975; 8: 125–125
  • Cohen M.S., Britigan B.E., Pou S., Rosen G.M. Applications of spin trapping to human phagocytic cells: insight into conditions for formation and limitation of hydroxyl radical. Free Radical Research Communications 1991; 12: 17–25
  • Powell S.R. Salicylate trapping of ·OH as a tool for studying post-ischemic oxidative injury in the isolated rat heart. Free Radical Research 1994; 21: 355–370
  • Halliwell B., Kaur H. Hydroxylation of salicylate and phenylalanine as assays for hydroxyl radicals: a cautionary note visited for the third time. Free Radical Research 1997; 27: 239–244
  • Grootveld M., Halliwell B. Aromatic hydroxylation as a potential measure of hydroxyl radical formation in vivo. Identification of hydroxylated derivatives of salicylate in human body fluids. Biochemical Journal 1986; 237: 499–504
  • O'Connell M.J., Webster N.R. Hyperoxia and salicylate metabolism in rats. Journal of Pharmacy and Pharmacology 1990; 42: 205–206
  • Cao W., Carney J.M., Duchon A., Floyd R.A., Chevion M. Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neuroscience Letters 1988; 88: 233–238
  • Giovanelli A., Liang L.P., Hastings T.G., Zigmond M.J. Estimating hydroxyl radical content in rat brain using systemic and intraventicular salicylate: impact of methamphetamine. Journal of Neurochemistry 1995; 64: 1819–1825
  • Hammer B., Parker W.D., Jr., Bennett J.P., Jr. NMDA receptors increase OH radicals in vivo by using nitric oxide synthase and protein kinase C. NeuroReport 1993; 5: 72–74
  • Ghiselli A., Laurenti O., De Mattia G., Maiani G., Ferro-Luzzi A. Salicylate hydroxylation as an early marker of in vivo oxidative stress in diabetic patients. Free Radical Biology and Medicine 1992; 13: 621–626
  • Kaur H., Edmonds S.E., Blake D.R., Halliwell B. Hydroxyl radical generation by rheumatoid blood and knee-joint synovial fluid. Annals of Rheumatic Disease 1996; 55: 915–920
  • Merenyi G., Lind J., Goldstein S., Czapski G. Peroxynitrous acid homolyzes into ·OH and ·NO2 radicals. Chemical Research in Toxicology 1998; 11: 712–713
  • Kaur H., Whiteman M., Halliwell B. Peroxynitrite-dependent aromatic hydroxylation and nitration of salicylate and phenylalanine. Is hydroxyl radical involved?. Free Radical Research 1997; 26: 71–82
  • Richeson C.E., Mulder P., Bowry V.W., Ingold K.U. The complex chemistry of peroxynitrite decomposition: new insights. Journal of the American Chemical Society 1998; 120: 7211–7219
  • Dizdaroglu M. Measurement of radiation-induced damage to DNA at the molecular level. International Journal of Radiation Biology 1992; 61: 75–183
  • Spencer J.P., Jenner A., Aruoma O.I., Cross C.E., Wu R., Halliwell B. Oxidative DNA damage in human respiratory tract epithelial cells. Time course in relation to DNA strand breakage. Biochemical and Biophysical Research Communications 1996; 224: 17–22
  • Nassi-Calo L., Mello-Filho C., Meneghini R. O-Phenanthroline protects mammalian cells from H2O2-induced gene mutation and morphological transformation. Carcinogenesis 1989; 10: 1055–1057
  • Balentine J.D. Pathology of Oxygen Toxicity. Academic Press, New York 1982
  • Yam J., Frank L., Roberts R.J. Oxygen toxicity: comparison of lung biochemical responses in neonatal and adult rats. Pediatric Research 1978; 12: 115–119
  • Fridovich I. Superoxide anion radical O-2, superoxide dismutases and related matters. Journal of Biological Chemisty 1997; 272: 18515–18517
  • Lebovitz R.M., Zhang H., Vogel H., Cartwright J., Jr., Dionne L., Huang L.W., Matzuk M.M. Neurodegeneration, myocardial injury and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proceedings of the National Academy of Sciences of the USA 1996; 93: 9782–9787
  • Li Y., Huang T.T., Carlson E.J., Melou S., Ursell P.C., Olson J.L., Noble L.J., Yoshimura M.P., Berger C., Chan P.H. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese SOD. Nature Genetics 1995; 11: 376–381
  • Matzuk M.M., Dionne L., Guo Q., Kumar T.R., Lebovitz R.M. Ovarian function in superoxide dismutase 1 and 2 knockout mice. Endocrinology 1998; 139: 4008–4011
  • Ho Y.S., Gargano M., Cao J., Bronson R.T., Heimler I., Hutz R.J. Reduced fertility in mice lacking copperzinc superoxide dismutase. Journal of Biological Chemistry 1998; 273: 7765–7769
  • De Haan J.B., Bladier C., Griffiths P., Kelner M., O'Shea R.D., Cheung N.S., Bronson R.T., Silvestro M.J., Wild S., Zheng S.S., Beart P.M., Hertzog P.J., Kola I. Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and H2O2. Journal of Biological Chemistry 1998; 273: 22528–22536
  • Ho Y.S., Magnenat J.L., Bronson R.T., Cao J., Cargano M., Sugawara M., Funk C.D. Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. Journal of Biological Chemistry 1997; 272: 16644–16651
  • Yoshida Y., Maulik N., Engelman R.M., Ho Y.S., Magnenat J.L., Rouson J.A., Nack 3rd J.E., Deaton D., Das D.K. Glutathione peroxidase knockout mice are susceptible to myocardial ischemia reperfusion injury. Circulation 1997; 96(Suppl. 9)II–216
  • Charles S.A., Halliwell B. Light activation of fructose bisphosphatase in isolated spinach chloroplasts and deactivation by H2O2. A physiological role for the thioredoxin system. Planta 1981; 151: 242–246
  • Nakamura H., Nakamura Y., Yodoi J. Redox regulation of cellular activation. Annual Review of Immunology 1997; 15: 351–369
  • Jin D.Y., Chae H.Z., Rhee S.C., Jeang K.T. Regulatory role for a novel human thioredoxin peroxidase in NF-Kappa B activation. Journal Biological Chemistry 1997; 272: 30952–30961
  • Hill K.E., Burke R.F. Selenoprotein P: recent studies in rats and in humans. Biomedical and Environmental Sciences 1997; 10: 198–208
  • Gromer S., Arscott L.D., Williams C.H., Jr., Schirmer R.H., Becker K. Human placental thioredoxin reductase. Journal of Biological Chemistry 1998; 273: 20096–20101
  • Halliwell B., Gutteridge J.M.C. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Archives of Biochemistry and Biophysics 1986; 246: 501–514
  • Picard V., Epsztejn S., Santambroggio P., Cabantchik Z.I., Beaumont C. Role of ferritin in the control of the labile iron pool in murine erythroleukemia cells. Journal of Biological Chemistry 1998; 273: 15382–15386
  • Craven C.M., Alexander J., Eldridge M., Kushner J.P., Bernstein S., Kaplan J. Tissue distribution and clearance kinetics of non-transferrin-bound iron in the hypotransferrinemic mouse: a rodent model for hemochromatosis. Proceedings of the National Academy of Sciences of the USA 1987; 84: 3457–3461
  • Simpson R.J., Cooper C.F., Raja K.B., Halliwell B., Evans P.J., Aruoma O.I., Singh S., Konijn A.M. Non-transferrin bound iron species in the serum of hypotransferrinemic mice. Biochimica et Biophysica Acta 1992; 1156: 19–26
  • Dickinson T.K., Connor J.R. Histological analysis of selected brain regions of hypotransferrinemic mice. Brain Research 1994; 635: 169–178
  • O'Donnell V.B., Chumley P.H., Hogg N., Bloodsworth A., Darley-Usmar V.M., Freeman B.A. Nitric oxide inhibition of lipid peroxidation: kinetics of reaction with lipid peroxyl radicals and comparison with alpha-tocopherol. Biochemistry 1997; 36: 15216–15223
  • Rubbo H., Radi R., Trujillo M., Telleri R., Kalyanaraman B., Barnes S., Kirk M., Freeman B.A. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Journal of Biological Chemistry 1994; 269: 26066–26075
  • Cannon R.O., 3rd. Role of nitric oxide in cardiovascular disease: focus on the endothelium. Clinical Chemistry 1998; 44: 1809–1819
  • Block G., Patterson B., Subar A. Fruit, vegetables and cancer prevention: a review of the epidemiological evidence. Nutrition and Cancer 1992; 18: 1–29
  • Gey K.F. Ten year retrospective on the antioxidant hypothesis of arteriosclerosis. Journal of Nutritional Biochemistry 1995; 6: 206–236
  • Rowe A.L. β-Carotene takes a beating. Lancet 1996; 347: 249–249
  • Halliwell B. Food-derived antioxidants. Evaluating their importance in food and in vivo. Food Science and Agricultural Chemistry 1999, in press
  • Halliwell B. Vitamin C: antioxidant of pro-oxidant in vivo?. Free Radical Research 1996; 25: 439–454
  • Rehman A., Collis C.S., Yang M., Kelly M., Diplock A.T., Halliwell B., Rice-Evans C. The effect of iron and vitamin C co-supplementation on oxidative damage to DNA in healthy volunteers. Biochemical and Biophysical Research Communications 1998; 246: 293–298
  • Yang M., Collis C.S., Kelly M., Diplock A.T., Rice-Evans C. Do iron and vitamin C co-supplementation influence platelet function or LDL oxidizability in healthy volunteers?. European Journal of Clinical Nutrition 1999; 53: 1–8
  • Special issue on analysis of oxidative DNA damage. Free Radical Research 1998; 29: 461–624
  • Kasai H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutation Research 1997; 387: 147–163
  • Beatty E.R., England T.G., Geissler C.A., Aruoma O.I., Halliwell B. Effect of antioxidant vitamin supplementation on markers of DNA damage and plasma antioxidants. Proceedings of the Nutrition Society 1999, in press
  • Priemé H., Loft S., Nyyssönen K., Salonen J.T., Poulsen H.E. No effect of supplementation with vitamin E, ascorbic acid or coenzyme Q10 on oxidative DNA damage estimated by 8OHdG excretion in smokers. American Journal of Clinical Nutrition 1997; 65: 503–507
  • Verhagen V., Poulsen H.E., Loft S., van Poppel C., Willems M.I., van Bladeren P.J. Reduction of oxidative DNA-damage in humans by Brussels sprouts. Carcinogenesis 1995; 16: 969–970
  • Halliwell B. Can oxidative DNA damage be used as a biomarker of cancer risk in humans?. Free Radical Research 1998; 29: 469–486
  • Collins A.R., Gedik C.M., Olmedilla B., Southon S., Bellizzi M. Oxidative DNA damage measured in human lymphocytes: large differences between sexes and between countries, and correlations with heart disease mortality rates. FASEB Journal 1998; 12: 1397–1400

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.