71
Views
41
CrossRef citations to date
0
Altmetric
Original Article

Down regulation of superoxide dismutases and glutathione peroxidase by reactive oxygen and nitrogen species

&
Pages 301-308 | Received 17 Mar 1999, Published online: 07 Jul 2009

References

  • Halliwell B., Gutteridge J.M.C. Free Radical Biology and Medicine3rd edn. Clarendon Press, Oxford 1999
  • Taniguchi N. Clinical significances of superoxide dismutases: Changes in aging, diabetes, ischemia, and cancer. Advance in Clinical Chemistry 1992; 29: 1–59
  • Chae H.Z., Rhee S.G. A thiol-specific antioxidant and sequence homology to various proteins of unknown function. Biofactors 1994; 4: 177–180
  • Matsumoto A., Okado A., Fujii T., Fujii J., Egashira M., Niikawa N., Taniguchi N. Cloning of peroxiredoxin gene family in rats and characterization of the fourth member. FEBS Letters 1999; 443: 246–250
  • Rosen, D.R., Siddique, T., Patterson, D., Figlewicz, D.A., Sapp, P., et al. Mutations in Cu/Zn-superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362: 59–62
  • Deng, H.X., Hentati, A., Tainer, J.A., Iqbal, Z., Cayabyab, A., Hung, W.Y., Getzoff, E.D., Hu, P., Herzfeldt, B., Roos, R.P., et al. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 1993; 261: 1047–1051
  • Fujii J., Myint T., Seo H.G., Kayanoki Y., Ikeda Y., Taniguchi N. Characterization of wild-type and amyotrophic lateral sclerosis-related mutant Cu,Zn-superoxide dismutases overproduced in baculovirus-infected insect cells. Journal of Neurochemistry 1995; 64: 1456–1461
  • Borchelt D.R., Lee M.K., Slunt H.S., Guarnieri M., Xu Z.S., Wong P.C., Brown R.H., Jr., Price D.L., Sisodia S.S., Cleveland D.W. Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proceedings of the National Academy of Sciences of the USA 1994; 91: 8292–8296
  • Rothstein J.D., Bristol L.A., Hosler B., Brown R.H., Jr., Kuncl R.W. Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons. Proceedings of the National Academy of Sciences of the USA 1994; 91: 4155–4159
  • Gurney, M.E., Pu, H., Chiu, A.Y., Dal Canto, M.C., Polchow, C.Y., Alexander, D.D., Caliendo, J., Hentati, A., Kwon, Y.W., Deng, H.X., et al. Motor neuron degradation in mice that express a human Cu,Zn-superoxide dismutase mutation. Science 1994; 264: 1772–1775
  • Wiedau-Pazos M., Goto J.J., Rabizadeh S., Gralla E.B., Roe J.A., Lee M.K., Valentine J.S., Bredesen D.E. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 1996; 271: 515–518
  • Yim M.B., Kang J.H., Yim H.S., Kwak H.S., Chock P.B., Stadtman E.R. A gain-of function of an amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase mutant: An enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proceedings of the National Academy of Sciences of the USA 1996; 93: 5709–5714
  • Singh R.J., Karoui H., Gunther M.R., Beckman J.S., Mason R.P., Kalyanaraman B. Reexamination of the mechanism of hydroxyl radical adducts formed from the reaction between familial amyotrophic lateral sclerosis-associated Cu,Zn superoxide dismutase mutants and H2O2. Proceedings of the National Academy of Sciences of the USA 1998; 95: 6675–6680
  • Crow J.P., Sampson J.B., Zhuang Y., Thompson J.A., Beckman J.S. Decreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite. Journal of Neurochemistry 1997; 69: 1936–1944
  • Bruijn L.I., Houseweart M.K., Kato S., Anderson K.L., Anderson S.D., Ohama E., Reaumem A.G., Scott R.W., Cleveland D.W. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 1998; 281: 1851–1854
  • Brown R.H., Jr. SOD1 aggregates in ALS: cause, correlate or consequence?. Nature Medicine 1998; 4: 1362–1364
  • Kayanoki Y., Fujii J., Suzuki K., Kawata S., Matsuzawa Y., Taniguchi N. Suppression of antioxidative enzyme expression by transforming growth factor-β1 in rat hepatocytes. Journal of Biological Chemistry 1994; 269: 15488–15492
  • Aida Y., Maeyama S., Takakuwa T., Uchikoshi T., Endo Y., Suzuki K., Taniguchi N. Immunohistochemical expression of manganese superoxide dismutase in hepatocellular carcinoma, using a specific monoclonal antibody. Journal of Gastroenterology 1994; 29: 443–449
  • Fujiwara N., Fujii T., Fujii J., Taniguchi N. Functional expression of rat thioredoxin reductase: selenocysteine insertion sequence element is essential for the active enzyme. Biochemical Journal 1999, in press
  • Kayanoki Y., Fujii J., Islam K.N., Suzuki K., Kawata S., Matsuzawa Y., Taniguchi N. The protective role of glutathione peroxidase in apoptosis induced by reactive oxygen species. Journal of Biochemistry 1996; 119: 817–822
  • Hockenbery D.M., Oltvai Z.N., Yin X.M., Milliman C.L., Korsmeyer S.J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993; 75: 241–251
  • Amstad P., Monet R., Cerutti P. Glutathione peroxidase compensates for the hypersensitivity of Cu,Zn-superoxide dismutase overproducers to oxidant stress. Journal of Biological Chemistry 1994; 269: 1606–1609
  • Wong G.H., Elwell J.H., Oberley L.W., Goeddel D.V. Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 1989; 58: 923–931
  • Arai M., Imai H., Koumura T., Yoshida M., Emoto K., Umeda M., Chiba N., Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells. Journal of Biological Chemistry 1999; 274: 4924–4933
  • Islam K.N., Kayanoki Y., Kaneto H., Suzuki K., Asahi M., Fujii J., Taniguchi N. TGF-β1 triggers oxidative modifications and enhances apoptosis in HIT cells through accumulation of reactive oxygen species by suppression of catalase and glutathione peroxidase. Free Radical Biology and Medicine 1997; 22: 1007–1017
  • Kaneto H., Fujii J., Seo H.G., Suzuki K., Matsuoka M., Nakamura M., Tatsumi H., Yamasaki Y., Kamada T., Taniguchi N. Apoptotic cell death triggered by nitric oxide in pancreatic β-cells. Diabetes 1995; 44: 733–738
  • Kim Y.M., Bombeck C.A., Billiar T.R. Nitric oxide as a bifunctional regulator of apoptosis. Circulation Research 1999; 84: 253–256
  • Seo H.G., Takata I., Nakamura M., Tatsumi H., Suzuki K., Fujii J., Taniguchi N. Induction of nitric oxide synthase and concomitant suppression of superoxide dismutases in experimental colitis in rats. Archives of Biochemistry and Biophysics 1995; 324: 41–47
  • Watanabe T., Fujii J., Suzuki K., Fujii T., Asahi M., Matsuoka K., Taniguchi N. Dysfunction of antioxidative enzymes in the trinitrobenzensulfonic acid-induced coliltis rat. Pathophysiology 1998; 5: 191–198
  • Sies H., Sharov V.S., Klotz L.O., Briviba K. Glutathione peroxidase protects against peroxynitritemediated oxidations. A new function for selenoproteins as peroxynitrite reductase. Journal of Biological Chemistry 1997; 272: 27812–27817
  • Asahi M., Fujii J., Suzuki K., Seo H.G., Kuzuya T., Hori M., Tada M., Fujii S., Taniguchi N. Inactivation of glutathione peroxidase by nitric oxide. Implication for cytotoxicity. Journal of Biological Chemistry 1995; 270: 21035–21039
  • Asahi M., Fujii J., Takao T., Kuzuya T., Hori M., Shimonishi Y., Taniguchi N. The oxidation of selenocysteine is involved in the inactivation of glutathione peroxidase by nitric oxide donor. Journal of Biological Chemistry 1997; 272: 19152–19157
  • Arai K., Maguchi S., Fujii S., Ishibashi H., Oikawa K., Taniguchi N. Glycation and inactivation of human Cu-Zn-superoxide dismutase. Identification of the in vitro glycation sites. Journal of Biological Chemistry 1987; 262: 16969–16972
  • Ookawara T., Kawamura N., Kitagawa Y., Taniguchi N. Site-specific and random fragmentation of Cu,Zn-superoxide dismutase by glycation reaction. Implication of reactive oxygen species. Journal of Biological Chemistry 1992; 267: 18505–18510
  • Okado A., Kawasaki Y., Hasuike Y., Takahashi M., Fujii J., Taniguchi N. Induction of apoptotic cell death by methylglyoxal and 3-deoxyglucosone in macrophagederived cell lines. Biochemical and Biophysical Research Communications 1996; 225: 219–224
  • Kaneto H., Fujii J., Myint T., Miyazawa N., Islam K.N., Kawasaki Y., Suzuki K., Nakamura M., Tatsumi H., Yamasaki Y., Taniguchi N. Reducing sugar triggers oxidative modification and apoptosis in pancreatic β-cells by provoking oxidative stress through glycation reaction. Biochemical Journal 1996; 320: 855–863
  • Myint T., Hoshi S., Ookawara T., Miyazawa N., Suzuki K., Taniguchi N. Immunological detection of glycated proteins in normal and streptozotocin-induced diabetic rats using anti hexitol-lysine IgG. Biochimica et Biophysica Acta 1995; 1272: 73–79
  • Miyazawa N., Kawasaki Y., Fujii J., Theingi M., Hoshi A., Hamaoka R., Matsumoto A., Uozumi N., Teshima T., Taniguchi N. Immunological detection of fructated proteins in vitro and in vivo. Biochemical Journal 1998; 336: 101–107
  • Kawasaki Y., Fujii J., Miyazawa N., Hoshi A., Okado A., Tano Y., Taniguchi N. Specific detections of the early process of the glycation reaction by fructose and glucose in diabetic rat lens. FEBS Letters 1998; 441: 116–120
  • Takahashi M., Fujii J., Teshima T., Suzuki K., Shiba T., Taniguchi N. Identity of a major 3-deoxyglucosonereducing enzyme with aldehyde reductase in rat liver established by amino acid sequencing and cDNA expression. Gene 1993; 127: 249–253
  • Takahashi M., Fujii J., Miyoshi E., Hoshi A., Taniguchi N. Elevation of aldose reductase gene expression in rat primary hepatoma and hepatoma cell lines. Implication of cytotoxic aldehydes. International Journal of Cancer 1995; 62: 749–754
  • Nakamura H., Nakamura K., Yodoi J. Redox regulation of cellular activation. Annual Reviews of Immunology 1997; 15: 351–369

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.