44
Views
21
CrossRef citations to date
0
Altmetric
Original Article

Induction of antioxidant stress proteins in vascular endothelial and smooth muscle cells: Protective action of vitamin C against atherogenic lipoproteins

, , , , &
Pages 309-318 | Received 17 Mar 1999, Published online: 07 Jul 2009

References

  • Halliwell B. The role of oxygen radicals in human disease, with particular reference to the vascular system. Haemostasis 1993; 23: 118–126
  • Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 1993; 362: 801–809
  • Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. Journal of Biological Chemistry 1997; 272: 20 963–20 966
  • Cox D., Cohen M. Effects of oxidized low-density lipoprotein on vascular contraction and relaxation: Clinical and pharmacological implications in atherosclerosis. Pharmacological Reviews 1996; 48: 3–19
  • Ross R. Atherosclerosis — An inflammatory disease. New England Journal of Medicine 1999; 340: 115–126
  • Hajjar D.P., Haberland M.E. Lipoprotein trafficking in vascular cells. Journal of Biological Chemistry 1997; 272: 22 975–22 978
  • Siow R.C.M., Sato H., Bannai S., Leake D.S., Pearson J.D., Mann G.E. Vitamin C protects human arterial smooth muscle cells against atherogenic lipoproteins: Effects of antioxidant vitamins on oxidized LDL-induced increases in cystine transport and glutathione. Arteriosclerosis Thrombosis and Vascular Biology 1998; 18: 1662–1670
  • Siow R.C.M., Sato H., Mann G.E. Heme oxygenase-carbon monoxide signaling pathway in atherosclerosis: anti-atherogenic actions of bilirubin and carbon monoxide?. Cardiovascular Research 1999; 41: 385–394
  • Marchant C.E., Law N.S., Vanderveen C., Hardwick S.J., Carpenter K.L.H., Mitchinson M.J. Oxidized low-density-lipoprotein is cytotoxic to human monocytemacrophages-protection with lipophilic antioxidants. FEBS Letters 1995; 358: 175–178
  • Guyton J.R., Lenz M.L., Mathews B., Hughes H., Karsan D., Selinger E., Smith C.V. Toxicity of oxidized low-density lipoproteins for vascular smooth-muscle cells and partial protection by antioxidants. Atherosclerosis 1995; 118: 237–249
  • Levine G.N., Frei B., Koulouris S.N., Gerhard M.D., Keaney J.F., Jr., Vita J.A. Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 1996; 93: 1107–1113
  • Ting H.H., Timimi F.K., Boles K.S., Creager S.J., Ganz P., Creager M.A. Vitamin C improves endothelium-dependent vasodilation in patients with noninsulin-dependent diabetes mellitus. Journal of Clinical Investigation 1996; 97: 22–28
  • Ting H.H., Timimi F.K., Haley E.A., Roddy M.A., Ganz P., Creager M.A. Vitamin C improves endothelium-dependent vasodilation in forearm resistance vessels of humans with hypercholesterolemia. Circulation 1997; 95: 22–28
  • Vita J.A., Keaney J.F., Jr., Raby K.E., Morrow J.D., Freedman J.E., Lynch S., Koulouris S.N., Hankin B.R., Frei B. Low plasma ascorbic acid independently predicts the presence of an unstable coronary syndrome. Journal of the American College of Cardiology 1998; 31: 980–986
  • Tribble D.L. Antioxidant consumption and risk of coronary heart disease: Emphasis on vitamin C, vitamin E and β-carotene. Circulation 1999; 99: 591–595
  • Diaz M.N., Frei B., Vita J.A., Keaney J.F., Jr. Antioxidants and atherosclerotic heart disease. New England Journal of Medicine 1998; 337: 408–416
  • Bannai S., Tateishi N. Role of membrane transport in metabolism and function of glutathione in mammals. Journal of Membrane Biology 1986; 89: 1–8
  • Miura K., Ishii T., Sugita Y., Bannai S. Cystine uptake and glutathione level in endothelial cells exposed to oxidative stress. American Journal of Physiology 1992; 262: C50–C58
  • Bannai S., Sato H., Ishii T., Sugita Y. Induction of cystine transport activity in human fibroblasts by oxygen. Journal of Biological Chemistry 1989; 264: 18 480–18 484
  • Winkler B.S., Orselli S.M., Rex T.S. The redox couple between glutathione and ascorbic acid: A chemical and physiological perspective. Free Radical Biology and Medicine 1994; 17: 333–349
  • Meister A. Glutathione-ascorbic acid antioxidant system in animals. Journal of Biological Chemistry 1994; 269: 9397–9400
  • Johnston C., Meyer C., Srilakshmi J. Vitamin C elevates red blood cell glutathione in healthy adults. American Journal of Clinical Nutrition 1993; 58: 103–105
  • O'Connor E., Devesa A., Garcia C., Puertes I., Pellin A., Vina J. Biosynthesis and maintenance of GSH in primary astrocyte cultures: Role of l-cystine and ascorbate. Brain Research 1995; 680: 157–163
  • Rice-Evans C., Leake D., Bruckdorfer K.R., Diplock A. Practical approaches to low density lipoprotein oxidation: Whys, wherefores and pitfalls. Free Radical Research 1996; 25: 285–311
  • Ek A., Strom K., Cotgreave I. The uptake of ascorbic acid into human umbilical vein endothelial cells and its effect on oxidant insult. Biochemical Pharmacology 1995; 50: 1339–1346
  • Vera J., Rivas C., Velasquez F., Zhang R., Concha I., Golde D. Resolution of the facilitated transport of dehydroascorbic acid from its intracellular accumulation as ascorbic-acid. Journal of Biological Chemistry 1995; 270: 23 706–23 712
  • Niki E. Action of ascorbic acid as a scavenger of active and stable oxygen radicals. American Journal of Clinical Nutrition 1991; 54: 1119S–1124S
  • Wang L.J., Lee T.S., Lee F.Y., Pai R.C., Chau L.Y. Expression of heme oxygenase-1 in atherosclerotic lesions. American Journal of pathology 1998; 152: 711–720
  • Ishikawa K., Navab M., Leitinger N., Fogelman A.M., Lusis A.J. Induction of heme oxygenase-1 inhibits the monocyte transmigration induced by mildly oxidized LDL. Journal of Clinical Investigation 1997; 100: 1209–1216
  • Siow R.C.M., Ishii T., Sato H., Taketani S., Leake D.S., Sweiry J.H., Pearson J.D., Bannai S., Mann G.E. Induction of the antioxidant stress proteins heme oxygenase-1 and MSP23 by stress agents and oxidised LDL in cultured vascular smooth muscle cells. FEBS Letters 1995; 368: 239–242
  • Marks G., Brien J., Nakatsu K., McLaughlin B. Does carbon monoxide have a physiological function?. Trends in Pharmacological Science 1991; 12: 185–188
  • Maines M.D. The heme oxygenase system: a regulator of second messenger gases. Annual Review of pharmacology and Toxicology 1997; 37: 517–554
  • Jay M.T., Chirico S., Siow R.C.M., Bruckdorfer K.R., Jacobs M., Leake D.S., Pearson J.D., Mann G.E. Modulation of vascular tone by low density lipoproteins: Effects on L-arginine transport and nitric oxide synthesis. Experimental Physiology 1997; 82: 349–360
  • Lapenna D., de Gioia S., Ciofani G., Mezzetti A., Ucchino S., Calafiore A., Napolitano A., Dillio C., Cuccurullo F. Glutathione-related antioxidant defences in human atherosclerotic plaques. Circulation 1998; 97: 1930–1934
  • Schmidt H.H.H.W., Lohmann S.M., Walter U. The nitric oxide and cGMP signal transduction system: Regulation and mechanism of action. Biochimica Biophysica Acta 1993; 1178: 153–175
  • Motterlini R., Gonzales A., Foresti R., Clark J.E., Green C.J., Winslow R.M. Heme oxygenase-1-derived carbon monoxide contributes to the suppression of acute hypertensive responses in vivo. Circulation Research 1998; 83: 568–577
  • Sammut I.A., Foresti R., Clark J.E., Exon D.J., Vesely M.J., Sarathchandra P., Green C.J., Motterlini R. Carbon monoxide is a major contributor to the regulation of vascular tone in aortas expressing high levels of haeme oxygenase-1. British Journal of Pharmacology 1998; 125: 1437–1444
  • Hamilton L.C., Jimenez C., Wamer T.D. Heme oxygenase-1 induction has no significant effect on the vascular reactivity of rat aortic rings. British Journal of Pharmacology 1998; 125: 103–103
  • Hopkins P.N., Wu L.L., Hunt S.C., James B.C., Vincent G.M., Williams R.R. Higher serum bilirubin is associated with decreased risk for early familial coronary artery disease. Arteriosclerosis Thrombosis and Vascular Biology 1996; 16: 250–255
  • Stocker R., Yamamoto Y., McDonagh A.F., Glazer A.N., Ames B.N. Bilirubin is an antioxidant of possible physiological importance. Science 1987; 235: 1043–1046
  • Neuzil J., Stocker R. Free and albumin-bound bilirubin are efficient co-antioxidants for alpha-tocopherol, inhibiting plasma and low density lipoprotein lipid peroxidation. Journal of Biological Chemistry 1994; 269: 16 712–16 719
  • Siow R.C.M., Mann G.E. Vitamin C attenuates induction of heme oxygenase-1 by oxidized LDL in human smooth muscle cells. Journal of Physiology 1998; 506P, 37P
  • Sato H., Ishii T., Sugita Y., Tateishi N., Bannai S. Induction of a 23kDa stress protein by oxidative and sulfhydryl-reactive agents in mouse peritoneal macrophages. Biochimica et Biophysica Acta 1993; 1148: 127–132
  • Yamaguchi M., Sato H., Bannai S. Induction of stress proteins in mouse peritoneal macrophages by oxidized low-density lipoprotein. Biochemical and Biophysical Research Communications 1993; 193: 1198–1201
  • Ishii T., Yamada M., Sato H., Matsue M., Taketani S., Nakayama K., Sugita Y., Bannai S. Cloning and characterization of a 23-kDa stress-induced mouse peritoneal macrophage protein. Journal of Biological Chemistry 1993; 268: 18 633–18 636
  • Lim Y.S., Cha M.K., Kim H.K., Uhm T.B., Park J.W., Kim K., Kim L.H. Removal of hydrogen peroxide and hydroxyl radical by thiol-specific antioxidant protein as a possible role in vivo. Biochemical and Biophysical Research Communications 1993; 192: 273–280
  • Ishii T., Kawane T., Taketani S., Bannai S. Inhibition of the thiol-specific antioxidant activity of rat liver MSP23 protein by hemin. Biochemical and Biophysical Research Communications 1995; 216: 970–975
  • Jovinge S., Crisby M., Thyberg J., Nilsson J. DNA fragmentation and ultrastructural changes of degenerating cells in atherosclerotic lesions and smooth muscle cells exposed to oxidized LDL in vitro. Arteriosclerosis Thromobosis and Vascular Biology 1997; 17: 2225–2231
  • Harada-Shiba M., Kinoshita M., Kamido H., Shimokado K. Oxidized low density lipoprotein induces apoptosis in cultured human umbilical vein endothelial cells by common and unique mechanisms. Journal of Biological Chemistry 1998; 273: 9681–9687
  • Bennett M.R., Evan G.I., Schwartz S.M. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. Journal of Clinical Investigation 1995; 95: 2266–2274
  • Bjorkerud S., Bjorkerud B. Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability. American Journal of Pathology 1996; 149: 367–380
  • Thorne S.A., Abbot S.E., Winyard P.G., Blake D.R., Mills P.G. Extent of oxidative modification of low-density-lipoprotein determines the degree of cytotoxicity to human coronary-artery cells. Heart 1996; 75: 11–16
  • Bjorkerud B., Bjorkerud S. Contrary effects of lightly and strongly oxidized LDL with potent promotion of growth versus apoptosis on arterial smooth muscle cells, macrophages, and fibroblasts. Arteriosclerosis Thrombosis and Vascular Biology 1996; 16: 416–424
  • Siow R.C.M., Richards J.P., Pedley K., Leake D.S., Mann G.E. Vitamin C protects against apoptosis of human vascular smooth muscle cells induced by moderately oxidized LDL containing high levels of lipid hydroperoxides. Arteriosclerosis Thrombosis and Vascular Biology 1999, (paper in press
  • Hancock W.W., Buelow R., Sayegh M.H., Turka L.A. Antibody-induced transplant atherosclerosis is prevented by graft expression of anti-oxidant and antiapoptotic genes. Nature Medicine 1998; 4: 1392–1396

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.