282
Views
219
CrossRef citations to date
0
Altmetric
Review Article

The heme oxygenase pathway and its interaction with nitric oxide in the control of cellular homeostasis

&
Pages 459-475 | Received 19 May 1999, Published online: 07 Jul 2009

References

  • Palmer R.M.J., Ashton D.S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664–666
  • Moncada S., Palmer R.M.J., Higgs E.A. Nitric oxide physiology, pathophysiology, and pharmacology. Pharmacological Review 1991; 43: 109–142
  • Furchgott R.F., Jothianandan D. Endothelium-dependent and -independent vasodilation involving cGMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels 1991; 28: 52–61
  • Zakhary R., Gaine S.P., Dinerman J.L., Ruat M., Flavahan N.A., Snyder S.H. Heme oxygenase 2: endothelial and neuronal localization and role in endothelium-dependent relaxation. Proceeding of the National Academy of Sciences of the United States of America 1996; 93: 795–798
  • Motterlini R., Gonzales A., Foresti R., Clark J.E., Green C.J., Winslow R.M. Heme oxygenase-1-derived carbon monoxide contributes to the suppression of acute hypertensive responses in vivo. Circulation Research 1998; 83: 568–577
  • Sammut I.A., Foresti R., Clark J.E., Exon D.J., Vesely M.J.J., Sarathchandra P., Green C.J., Motterlini R. Carbon monoxide is a major contributor to the regulation of vascular tone in aortas expressing high levels of haeme oxygenase-1. British Journal of Pharmacology 1998; 125: 1437–1444
  • Maines M.D. Carbon monoxide: an emerging regulator of cGMP in the brain. Molecular and Cellular Neurosciences 1993; 4: 389–397
  • Verma A., Hirsch D.J., Glatt C.E., Ronnett G.V., Snyder S.H. Carbon monoxide: a putative neural messenger. Science 1993; 259: 381–384
  • Durante W., Kroll M.H., Christodoulides N., Peyton K.J., Schafer A.I. Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells. Circulation Research 1997; 80: 557–564
  • Morita T., Perrella M.A., Lee M.E., Kourembanas S. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proceeding of the National Academy of Sciences of the United States of America 1995; 92: 1475–1479
  • Ingi T., Cheng J., Ronnett G.V. Carbonmonoxide: an endogenous modulator of the nitric oxidecyclic GMP signaling system. Neuron 1996; 16: 835–842
  • Brune B., Ullrich V. Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Molecular Pharmacology 1988; 32: 497–504
  • Friebe A., Mullershausen F., Smolenski A., Walter U., Schultz G., Koesling D. YC-1 potentiates nitric oxide- and carbon monoxide-induced cyclic GMP effects in human platelets. Molecular Pharmacology 1998; 54: 962–967
  • Tenhunen R., Marver H.S., Schmid R. Microsomal heme oxygenase. Characterization of the enzyme. Journal of Biological Chemistry 1969; 244: 6388–6394
  • Maines M.D. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB Journal 1988; 2: 2557–2568
  • Abraham N.G., Drummond G.S., Lutton J.D., Kappas A. The biological significance and physiological role of heme oxygenase. Cellular Physiology and Biochemistry 1996; 6: 129–168
  • Suematsu M., Wakabayashi Y., Ishimura Y. Gaseous monoxides. A new class of microvascular regulator in the liver. Cardiovascular Research 1996; 32: 679–686
  • Choi A.M.K., Alam J. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. American Journal of Respiratory Cell and Molecular Biology 1996; 15: 9–19
  • Maines M.D. The heme oxygenase system: a regulator of second messenger gases. Annual Review of Pharmacology and Toxicology 1997; 37: 517–554
  • Wang R. Resurgence of carbon monoxide: an endogenous gaseous vasorelaxing factor. Canadian Journal of Physiology and Pharmacology 1998; 76: 1–15
  • Durante W., Schafer A.I. Carbon monoxide and vascular cell function (Review). International Journal of Molecular Medicine 1998; 2: 255–262
  • Snyder S.H., Jaffrey S.R., Zakhary R. Nitric oxide and carbon monoxide: parallel roles as neural messengers. Brain Research Reviews 1998; 26: 167–175
  • Johnson R.A., Kozma F., Colombari E. Carbon monoxide: from toxin to endogenous modulator of cardiovascular functions. Brazilian Journal of Medical and Biological Research 1999; 32: 1–14
  • Siow R.C.M., Sato H., Mann G.E. Heme oxygenase carbon monoxide signalling pathway in atherosclerosis: anti-atherogenic actions of bilirubin and carbon monoxide?. Cardiovascular Research 1999; 41: 385–394
  • Ignarro L. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annual Review of Pharmacology and Toxicology 1990; 30: 535–560
  • Maines M.D., Trakshel G.M., Kutty R.K. Characterization of two constitutive forms of rat liver microsomal heme oxygenase: only one molecular species of the enzyme is inducible. Journal of Biological Chemistry 1986; 261: 411–419
  • McCoubrey W.M., Maines M.D. The structure, organization and differential expression of the gene encoding rat heme oxygenase-2. Gene 1994; 139: 155–161
  • Cruse I., Maines M.D. Evidence suggesting that the two forms of heme oxygenase are products of different genes. Journal of Biological Chemistry 1988; 263: 3348–3353
  • Trakshel G.M., Maines M.D. Multiplicity of heme oxygenase isozymes: HO-1 and HO-2 are different molecular species in rat and rabbit. Journal of Biological Chemistry 1989; 264: 1323–1328
  • McCoubrey W.K., Huang T.J., Maines M.D. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. European Journal of Biochemistry 1997; 247: 725–732
  • Raju V.S., McCoubrey W.K., Maines M.D. Regulation of heme oxygenase-2 by glucocorticoids in neonatal rat brain: characterization of a functional glucocorticoid response element. Biochimica Biophysica Acta 1997; 1351: 89–104
  • Suematsu M., Goda N., Sano T., Kashiwagi S., Egawa T., Shinoda Y., Ishimura Y. Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver. Journal of Clinical Investigation 1995; 96: 2431–2437
  • Dore S., Takahashi M., Ferris C.D., Hester L.D., Guastella D., Snyder S.H. Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proceeding of the National Academy of Sciences of the United States of America 1999; 96: 2445–2450
  • Lautier D., Luscher P., Tyrrell R.M. Endogenous glutathione levels modulate both constitutive and UVA radiation/hydrogen peroxide inducible expression of the human heme oxygenase gene. Carcinogenesis 1992; 13: 227–232
  • Lee P.J., Alam J., Sylvester S.L., Inamdar N., Otterbein L., Choi A.M.K. Regulation of heme oxygenase-1 expression in vivo and in vitro in hyperoxic lung injury. American Journal of Respiratory Cell and Molecular Biology 1996; 14: 556–568
  • Rizzardini M., Carelli M., Cabello Porras M.R., Cantoni L. Mechanisms of endotoxin-induced haem oxygenase mRNA accumulation in mouse liver: synergism by glutathione depletion and protection by N-acetylcysteine. Biochemical Journal 1994; 304: 477–483
  • Motterlini R., Foresti R., Intaglietta M., Winslow R.M. NO-mediated activation of heme oxygenase: endogenous cytoprotection against oxidative stress to endothelium. American Journal of Physiology 1996; 270: H107–H114
  • Foresti R., Clark J.B., Green C.J., Motterlini R. Thiol compounds interact with nitric oxide in regulating heme oxygenase-1 induction in endothelial cells. Involvement of superoxide and peroxynitrite anions. Journal of Biological Chemistry 1997; 272: 18411–18417
  • Foresti R., Sarathchandra P., Clark J.E., Green C.J., Motterlini R. Peroxynitrite induces haem oxygenase-1 in vascular endothelial cells: a link to apoptosis. Biochemical Journal 1999; 339: 729–736
  • Balla J., Jacob H.S., Balla G., Nath K., Eaton J.W., Vercellotti G.M. Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage. Proceeding of the National Academy of Sciences of the United States of America 1993; 90: 9285–9289
  • Balla J., Nath K.A., Balla G., Juckett M.B., Jacob H.S., Vercellotti G.M. Endothelial cell heme oxygenase and ferritin induction in rat lung by hemoglobin in vivo. American Journal of Physiology 1995; 268: L321–L327
  • Motterlini R., Foresti R., Intaglietta M., Vandegriff K., Winslow R.M. Oxidative-stress response in vascular endothelial cells exposed to acellular hemoglobin solutions. American Journal of Physiology 1995; 269: H648–H655
  • Nath K.A., Balla G., Vercellotti G.M., Balla J., Jacob H.S., Levitt M.D., Rosenberg M.E. Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the rat. Journal of Clinical Investigation 1992; 90: 267–270
  • Balla G., Jacob H.S., Balla J., Rosenberg M., Nath K., Apple F., Eaton J.W., Vercellotti G.M. Ferritin: a cytoprotective antioxidant stratagem of endothelium. Journal of Biological Chemistry 1992; 267: 18148–18153
  • Otterbein L., Sylvester S.L., Choi A.M.K. Hemoglobin provides protection against lethal endotoxemia in rats: the role of heme oxygenase-1. American Journal of Respiratory Cell and Molecular Biology 1995; 13: 595–601
  • Otterbein L., Chin D.Y., Otterbein S.L., Lowe V.C., Fessler H.E., Choi A.M.K. Mechanism of hemoglobin-induced protection against endotoxemia in rats: a ferritin-independent pathway. American Journal of Physiology 1997; 272: L268–L275
  • Clark J.E., Saltzman D.J., Salaria R., Green C.J., Motterlini R. Myocardial preconditioning: possible involvement of heme oxygenase-1 in protection against ischaemia-reperfusion injury. 20th European Conference on Microcirculation, P.H. Carpentier, E. Vicaut, J.L. Guilmot. Monduzzi Editore Bologna. 1998; 113–117, In
  • Poss K.D., Tonegawa S. Reduced stress defense in heme oxygenase 1-deficient cells. Proceeding of the National Academy of Sciences of the United States of America 1997; 94: 10925–10930
  • Soares M.P., Lin Y., Anrather J., Csizmadia E., Takigami K., Sato K., Grey S.T., Colvin R.P., Choi A.M., Poss K.D., Bach F.H. Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nature Medicine 1998; 4: 1073–1077
  • Hancock W.W., Buelow R., Sayegh M.H., Turka L.A. Antibody-induced transplant arteriosclerosis is prevented by graft expression of anti-oxidant and anti-apoptotic genes. Nature Medicine 1998; 4: 1392–1396
  • Coceani F., Kelsey L., Seidlitz E., Marks G.S., McLaughlin B.E., Vreman H.J., Stevenson D.K., Rabinovitch M., Ackerley C. Carbon monoxide formation in the ductus arteriosus in the lamb: implications for the regulation of muscle tone. British Journal of Pharmacology 1997; 120: 599–608
  • Acevedo C.H., Ahmed A. Hemeoxygenase-1 inhibits human myometrial contractility via carbon monoxide and is upregulated by progesterone during pregnancy. Journal of Clinical Investigation 1998; 101: 949–955
  • Dennery P.A., Sridhar K.J., Lee C.S., Wong H.E., Shokoohi V., Rodgers P.A., Spitz D.R. Heme oxygenase-mediated resistance to oxygen toxicity in hamster fibroblasts. Journal of Biological Chemistry 1997; 272: 14937–14942
  • Moore E.G., Gibson Q.H. Cooperativity in the dissociation of nitric oxide from hemoglobin. Journal of Biological Chemistry 1976; 251: 2788–2794
  • Berger R.L., Davids N., Perrella M. Simulation of hemoglobin kinetics using finite element numerical methods. Methods in Enzymology 1994; 232: 517–558
  • Sharma V.S., Ranney H.M. The dissociation of NO from nitrosylhemoglobin. Journal of Biological Chemistry 1978; 253: 6467–6472
  • Gibson Q.H., Roughton F.J.W. The kinetics and equilibria of the reactions of nitric oxide with sheep hemoglobin. Journal of Physiology 1957; 136: 507–526
  • Motterlini R., Vandegriff K., Winslow R. Hemoglobin-NO interaction and its implications. Transfusion Medicine Review 1996; 10: 77–84
  • Wennmalm A., Benthin G., Edlund A., Jungersten L., Kieler-Jensen N., Lundin S., Westfelt U.N., Petersson A.S., Waagstein F. Metabolism and excretion of nitric oxide in humans. An experimental and clinical study. Circulation Research 1993; 73: 1121–1127
  • Sjostrand T. Endogenous formation of carbon monoxide in man under normal and pathological conditions. Scandinavian Journal of Clinical and Laboratory Investigation 1949; 1: 201–214
  • Coburn R.F., Williams W.J., White P., Kahn S.B. The production of carbon monoxide from hemoglobin in vivo. Journal of Clinical Investigation 1967; 46: 346–356
  • Wagner C.T., Durante W., Christodoulides N., Hellums J.D., Schafer A.I. Hemodynamic forces induce the expression of heme oxygenase in cultured vascular smooth muscle cells. Journal of Clinical Investigation 1997; 100: 589–596
  • Mcquillan L.P., Leung G.K., Marsden P.A., Kostyk S.K., Kourembanas S. Hypoxia inhibits expression of eNOS via transcriptional and posttranscriptional mechanisms. American Journal of Physiology 1995; 267: H1921–H1927
  • Liao J.K., Zulueta J.J., Yu F.S., Peng H.B., Cote C.G., Hassoun P.M. Regulation of bovine endothelial constitutive nitric oxide synthase by oxygen. Journal of Clinical Investigation 1995; 96: 2661–2666
  • Palmer L.A., Semenza G.L., Stoler M.H., Johns R.A. Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIFf-1. American Journal of Physiology 1998; 274: L212–L219
  • Motterlini R., Foresti R., Salaria R., Clark J.E., Green C.J. Hypoxia induces endothelial heme oxygenase-1 via transient up-regulation of inducible nitric oxide synthase. Nitric Oxide: Biology and Chemistry 1998; 2: 317–317
  • Caudill T.K., Resta T.C., Kanagy N.L., Walker B.R. Role of endothelial carbon monoxide in attenuated vasoreactivity following chronic hypoxia. American Journal of Physiology 1998; 275: R1025–R1030
  • Morita T., Kourembanas S. Endothelial cell expression of vasoconstrictors and growth factors is regulated by smooth muscle cell-derived carbon monoxide. Journal of Clinical Investigation 1996; 96: 2676–2682
  • Morita T., Mitsialis S.A., Koike H., Liu Y.X., Kourembanas S. Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells. Journal of Biological Chemistry 1997; 272: 32804–32809
  • Hartsfield C.L., Alam J., Cook J.L., Choi A.M.K. Regulation of heme oxygenase-1 gene expression in vascular smooth muscle cells by nitric oxide. American Journal of Physiology 1997; 273: L980–L988
  • Vesely M.J.J., Green C.J., Motterlini R. Heme oxygenase-1 expression in skeletal muscle is fibre-type specific. 20th European Conference on Microcirculation, P.H. Carpentier, E. Vicaut, J.L. Guilmot. Monduzzi Editore, Bologna 1998; 279–282, In
  • Essig D.A., Borger D.R., Jackson D.A. Induction of heme oxygenase-1 (HSP32) mRNA in skeletal muscle following contractions. American Journal of Physiology 1997; 272: C59–C67
  • Kobzik L., Reid M.B., Bredt D.S., Stamler J.S. Nitric oxide in skeletal muscle. Nature 1994; 372: 546–548
  • Kharitonov V.G., Sharma V.S., Pilz R.B., Magde D., Koesling D. Basis of guanylate cyclase activation by carbon monoxide. Proceeding of the National Academy of Sciences of the United States of America 1995; 92: 2568–2571
  • Stone J.R., Marletta M.A. Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous states. Biochemistry 1994; 33: 5636–5640
  • Schmidt H.H.H.W., Lohmann S.M., Walter U. The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochimica Biophysica Acta 1993; 1178: 153–175
  • Ignarro L.J., Barrot B., Wood K.S. Regulation of soluble guanylate cyclase activity by porphyrins and metalloporphyrins. Journal of Biological Chemistry 1984; 259: 6201–6207
  • Friebe A., Schultz G., Koesling D. Sensitizing soluble guanylyl cyclase to become a highly CO-sensitive enzyme. Embo Journal 1996; 15: 6863–6868
  • Stamler J.S. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 1994; 78: 931–936
  • Bolotina V.M., Najibi S., Palacino J.J., Pagano P.J., Cohen R.A. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 1994; 368: 850–853
  • Xu L., Eu J.P., Meissner G., Stamler J.S. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 1998; 279: 234–237
  • Mannick J.B., Miao X.Q., Stamler J.S. Nitric oxide inhibits Fas-induced apoptosis. Journal of Biological Chemistry 1997; 272: 24125–24128
  • Rossig L., Fichtlscherer B., Breitschopf K., Haendeler J., Zeiher A.M., Mulsch A., Dimmeler S. Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. Journal of Biological Chemistry 1999; 274: 6823–6826
  • Mannick J.B., Hausladen A., Liu L.M., Hess D.T., Zeng M., Miao Q.X., Kane L.S., Gow A.J., Stamler J.S. Fas-induced caspase denitrosylation. Science 1999; 284: 651–654
  • Nunoshiba T., deRojas-Walker T., Wishnok J.S., Tannenbaum S.R., Demple B. Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages. Proceeding of the National Academy of Sciences of the United States of America 1993; 90: 9993–9997
  • Hausladen A., Privalle C.T., Keng T., De Angelo J., Stamler J.S. Nitrosative stress: activation of the transcription factor OxyR. Cell 1996; 86: 719–729
  • Motterlini R., Hidalgo A., Sammut I., Shah K.A., Mohammed S., Srai K., Green C.J. A precursor of the nitric oxide donor SIN-1 modulates the stress protein heme oxygenase-1 in rat liver. Biochemical and Biophysical Research Communications 1996; 225: 167–172
  • Clark J.E., Green C.J., Motterlini R. Involvement of the heme oxygenase-carbon monoxide pathway in keratinocytes. Biochemical and Biophysical Research Communications 1997; 241: 215–220
  • Vesley M.J.J., Exon D.J., Clark J.E., Foresti R., Green C.J., Motterlini R. Heme oxygenase-1 induction in skeletal muscle cells: hemin and sodium nitroprus-side are regulators in vitro. American Journal of Physiology 1998; 275: C1087–C1094
  • Kim Y.M., deVera M.E., Watkins S.C., Billiar T.R. Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-a-induced apoptosis by inducing heat shock protein 70 expression. Journal of Biological Chemistry 1997; 272: 1402–1411
  • Malyshev I.Y., Manukhina E.B., Mikoyan V.D., Kubrina L.N., Vanin A.F. Nitric oxide is involved in heat-induced HSP70 accumulation. FEBS Letters 1995; 370: 159–162
  • Bolli R., Manchikalapudi S., Tang X.L., Takano H., Qiu Y.M., Guo Y.R., Zhang Q., Jadoon A.K. The protective effect of late preconditioning against myocardial stunning in conscious rabbits is mediated by nitric oxide synthase. Evidence that nitric oxide acts both as a trigger and as a mediator of the late phase of ischemic preconditioning. Circulation Research 1997; 81: 1094–1107
  • Takano H., Manchikalapudi S., Tang X.L., Qiu Y.M., Rizvi A., Jadoon A.K., Zhang Q., Bolli R. Nitric oxide synthase is the mediator of late preconditioning against myocardial infarction in conscious rabbits. Circulation 1998; 98: 441–449
  • Qiu Y.M., Rizvi A., Tang X.L., Manchikalapudi S., Takano H., Jadoon A.K., Wu W.J., Bolli R. Nitric oxide triggers late preconditioning against myocardial infarction in conscious rabbits. American Journal of Physiology 1997; 273: H2931–H2936
  • Wang R., Wu L.Y., Wang Z.Z. The direct effect of carbon monoxide on KCa channels in vascular smooth muscle cells. Pflugers Archives 1997; 434: 285–291
  • Wang R., Wu L. The chemical modification of KCa channels by carbon monoxide in vascular smooth muscle cells. Journal of Biological Chemistry 1997; 272: 8222–8226
  • Wang R., Wang Z.Z., Wu L.Y. Carbon monoxide-induced vasorelaxation and the underlying mechanisms. British Journal of Pharmacology 1997; 121: 927–934
  • Kerby R.L., Ludden P.W., Roberts G.P. Carbon monoxide-dependent growth of Rhodospirillum rubrum. Journal of Bacteriology 1995; 177: 2241–2244
  • Shelver D., Kerby R.L., He Y.P., Roberts G.P. Carbon monoxide-induced activation of gene expression in Rhodospirillum rubrum requires the product of cooA, a member of the cyclic AMP receptor protein family of transcriptional regulators. Journal of Bacteriology 1995; 177: 2157–2163
  • Aono S., Nakajima H., Saito K., Okada M. A novel heme protein that acts as a carbon monoxide-dependent transcriptional activator in rhodospirillum-rubrum. Biochemical and Biophysical Research Communications 1996; 228: 752–756
  • Shelver D., Kerby R.L., He Y.P., Roberts G.P. CooA, a CO-sensing transcription factor from Rhodospirillum rubrum, is a CO-binding heme protein. Proceeding of the National Academy of Sciences of the United States of America 1997; 94: 11216–11220
  • Bonam D., Ludden P.W. Purification and characterization of carbon monoxide dehydrogenase, a nickel, zinc, iron-sulfur protein, from Rhodospirillum rubrum. Journal of Biological Chemistry 1987; 262: 2980–2987
  • Young L.J., Caughey W.S. Mitochondrial oxygenation of carbon monoxide. Biochemical Journal 1986; 239: 225–227
  • Young L.J., Caughey W.S. Oxygenation of carbon-monoxide by bovine heart cytochrome-c-oxidase. Biochemistry 1986; 25: 152–161
  • Fenn W.O., Cobb D.M. The burning of carbon monoxide by heart and skeletal muscle. American Journal of Physiology 1932; 102: 393–401
  • Stamler J.S., Simon D.I., Osborne J.A., Mullins M.E., Jaraki O., Michel T., Singel D.J., Loscalzo J. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proceeding of the National Academy of Sciences of the United States of America 1992; 89: 444–448
  • Stamler J.S., Jaraki O., Osborne J., Simon D.I., Keaney J., Vita J., Singel D., Valeri C.R., Loscalzo J. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proceeding of the National Academy of Sciences of the United States of America 1992; 89: 7674–7677
  • Jia L., Bonaventura C., Bonaventura J., Stamler J.S. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 1996; 380: 221–226
  • Feelisch M., Stamler J.S. Preparation and detection of S-nitrosothiols. Methods in Nitric Oxide Research, M. Feelisch, J.S. Stamler. Wiley, New York 1996; 521–539, In
  • Ewing J.F., Maines M.D. Glutathione depletion induces heme oxygenase-1 (HSP32) mRNA and protein in rat brain. Journal of Neurochemistry 1993; 60: 1512–1519
  • Grundemar L., Ny L. Pitfalls using metalloporphyrins in carbon monoxide research. Trends in Pharmacological Sciences 1997; 18: 193–195
  • Lee J., Hunt J.A., Groves J.T. Manganese porphyrins as redox-coupled peroxynitrite reductases. Journal of American Chemical Society 1998; 120: 6053–6061
  • Salvemini D., Wang Z.Q., Stern M.K., Currie M.G., Misko T.P. Peroxynitrite decomposition catalysts: therapeutics for peroxynitrite-mediated pathology. Proceeding of the National Academy of Sciences of the United States of America 1998; 95: 2659–2663
  • Misko T.P., Highkin M.K., Veenhuizen A.W., Manning P.T., Stern M.K., Currie M.G., Salvemini D. Characterization of the cytoprotective action of peroxynitrite decomposition catalysts. Journal of Biological Chemistry 1998; 273: 15646–15653
  • Maines M.D. Carbon monoxide and nitric oxide homology: differential modulation of heme oxygenases in brain and detection of protein and activity. Methods in Enzymology 1996; 268: 473–488
  • Hausladen A., Stamler J.S. Nitric oxide in plant immunity. Proceeding of the National Academy of Sciences of the United States of America 1998; 95: 10345–10347
  • Schmidt H.H.H.W., Siebe J., Clement B., Feelisch M. 1H-[1,2,4]oxadiazolo(4,3-alquinoxalin-1-(ODQ) is not a selective inhibitor of soluble guanylyl cyclase: interference with NO-synthase and nitrovasodilator biotransformation. British Journal of Pharmacology 1998; 123: P6–P6
  • Bryk R., Wolff D.J. Mechanism of inducible nitric oxide synthase inactivation by aminoguanidine and L-N6-(1-iminoethyl)lysine. Biochemistry 1998; 37: 4844–4852
  • Motterlini R., Foresti R., Intaglietta M., Winslow R.M. Heme oxygenase activation by nitric oxide protects endothelial cells against oxidative stress. Pharmacological Research 1995; 31: 162–162
  • Kim Y.M., Bergonia H.A., Muller C., Pitt B.R., Watkins W.D., Lancaster J.R., Jr. Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. Journal of Biological Chemistry 1995; 270: 5710–5713
  • Hara E., Takahashi K., Tominaga T., Kumabe T., Kayama T., Suzuki H., Fujita H., Yoshimoto T., Shirato K., Shibahara S. Expression of heme oxygenase and inducible nitric oxide synthase messenger RNA in human brain tumors. Biochemical and Biophysical Research Communications 1996; 224: 153–158
  • Immenschuh S., Tan M., Ramadori G. Nitric oxide mediates the lipopolysaccharide dependent upregulation of the heme oxygenase-1 gene expression in cultured rat kupffer cells. Journal of Hepatology 1999; 30: 61–69
  • Immenschuh S., Hinke V., Ohlmann A., GifhornKatz S., Katz N., Jungermann K., Kietzmann T. Transcriptional activation of the haem oxygenase-1 gene by cGMP via a cAMP resonse element activator protein-1 element in primary cultures of rat hepatocytes. Biochemical Journal 1998; 334: 141–146
  • Feelisch M. The use of nitric oxide donors in pharmacological studies. Naunyn-Schmiedebergs Archives of Pharmacology 1998; 358: 113–122
  • Stamler J.S., Singel D.J., Loscalzo J. Biochemistry of nitric oxide and its redox activated forms. Science 1992; 258: 1898–1902
  • Xia Y., Roman L.J., Masters B.S.S., Zweier J.L. Inducible nitric-oxide synthase generates superoxide from the reductase domain. Journal of Biological Chemistry 1998; 273: 22635–22639
  • White K.A., Marletta M.A. Nitric oxide synthase is a cytochrome P 450 type protein. Journal of Biological Chemistry 1992; 269: 26390–26395
  • Chakder S., Rathi S., Ma X.L., Rattan S. Heme oxygenase inhibitor zinc protoporphyrin-ix causes and activation of nitric-oxide synthase in the rabbit internal anal-sphincter. Journal of Pharmacology and Experimental Therapeutics 1996; 277: 1376–1382
  • Gross S.S., Wolin M.S. Nitric-oxide: pathophysiological mechanisms. Annual Review of Physiology 1995; 57: 737–769
  • Turcanu V., Dhouib M., Poindron P. Nitric oxide synthase inhibition by haem oxygenase decreases macrophage nitric-oxide-dependent cytotoxicity: a negative feedback mechanism for the regulation of nitric oxide production. Research in Immunology 1998; 149: 741–744
  • Hausladen A., Gow A.J., Stamler J.S. Nitrosative stress: metabolic pathway involving the flavohemoglobin. Proceeding of the National Academy of Sciences of the United States of America 1998; 95: 14100–14105
  • MembrilloHernandez J., Coopamah M.D., Anjum M.F., Stevanin T.M., Kelly A., Hughes M.N., Poole R.K. The flavohemoglobin of Escherichia Coli confers resistance to a nitrosating agent, a “nitric oxide releaser,” and paraquat and is essential for transcriptional responses to oxidative stress. Journal of Biological Chemistry 1999; 274: 748–754
  • McDonagh A.F. Is bilirubin good for you. Clinics in Perinatology 1990; 17: 359–369
  • Stocker R., Yamamoto Y., McDonagh A.F., Glazer A.N., Ames B.N. Bilirubin is an antioxidant of possible physiological importance. Science 1987; 235: 1043–1046
  • Dennery P.A., McDonagh A.F., Spitz D.R., Rodgers P.A., Stevenson D.K. Hyperbilirubinemia results in reduced oxidative injury in neonatal gunn rats exposed to hyperoxia. Free Radical Biology and Medicine 1995; 19: 395–404
  • Hooper D.C., Spitsin S., Kean R.B., Champion J.M., Dickson G.M., Chaudhry I., Koprowski H. Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis. Proceeding of the National Academy of Sciences of the United States of America 1998; 95: 675–680
  • Skinner K.A., White C.R., Patel R., Tan S., Barnes S., Kirk M., Darley Usmar V., Parks D.A. Nitrosation of uric acid by peroxynitrite. Formation of a vasoactive nitric oxide donor. Journal of Biological Chemistry 1998; 273: 24491–24497
  • Lane N.J. Blood ties. Sciences-New York 1998; 38: 24–29
  • Yachie A., Niida Y., Wada T., Igarashi N., Kaneda H., Toma T., Ohta K., Kasahara Y., Koizumi S. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. Journal of Clinical Investigation 1999; 103: 129–135

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.