1,564
Views
588
CrossRef citations to date
0
Altmetric
Original Article

Endogenous nitric oxide synthesis: Biological functions and pathophysiology

Pages 577-596 | Received 07 Apr 1999, Published online: 07 Jul 2009

References

  • Green L.C., Tannenbaum S.R., Goldman P. Nitrate synthesis in the germfree and conventional rat. Science 1981; 212: 56–56
  • Green L.C., Ruiz de Luzuriaga K., Wagner D.A., Rand W., Istfan N., Young V.R., Tannenbaum S.R. Nitrate biosynthesis in man. Proceedings of the National Academy of Sciences of the United States of America 1981; 78: 7764–7764
  • Wagner D.A., Young V.R., Tannenbaum S.R., Schultz D.S., Deen W.M. Mammalian nitrate biochemistry: metabolism and endogenous synthesis. Iarc Scientific Publications 1984; 34: 247–247
  • Hegesh E., Shiloah J. Blood nitrates and infantile methemoglobinemia. Clinica Chimica Acta 1982; 125: 107–107
  • Wagner D.A., Young V.R., Tannenbaum S.R. Mammalian nitrate biosynthesis: incorporation of 15NH3 into nitrate is enhanced by endotoxin treatment. Proceedings of the National Academy of Sciences of the United States of America 1983; 80: 4518–4518
  • Stuehr D.J., Marletta M.A. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proceedings of the National Academy of Sciences of the United States of America 1985; 82: 7738–7738
  • Stuehr D.J., Marletta M.A. Synthesis of nitrite and nitrate in murine macrophage cell lines. Cancer Research 1987; 47: 5590–5590
  • Stuehr D.J., Marletta M.A. Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines, or interferon-gamma. Journal of Immunology 1987; 139: 518–518
  • Marletta M.A., Yoon P.S., Iyengar R., Leaf C.D., Wishnok J.S. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 1988; 27: 8706–8706
  • Hibbs J.B., Jr., Vavrin Z., Taintor R.R. L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. Journal of Immunology 1987; 138: 550–550
  • Hibbs J.B., Jr., Taintor R.R., Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 1987; 235: 473–473
  • Furchgott R.F., Zawadzki J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373–373
  • Griffith T.M., Edwards D.H., Lewis M.J., Newby A.C., Henderson A.H. The nature of endothelium-derived vascular relaxant factor. Nature 1984; 308: 645–645
  • Cocks T.M., Angus J.A., Campbell J.H., Campbell G.R. Release and properties of endothelium-derived relaxing factor (EDRF) from endothelial cells in culture. Journal of Cellular Physiology 1985; 123: 310–310
  • Rapoport R.M., Murad F. Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circulation Research 1983; 52: 352–352
  • Arnold W.P., Mittal C.K., Katsuki S., Murad F. Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proceedings of the National Academy of Sciences of the United States of America 1977; 74: 3203–3203
  • Ignarro L.J., Lippton H., Edwards J.C., Baricos W.H., Hyman A.L., Kadowitz P.J., Gruetter C.A. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. Journal of Pharmacology and Experimental Therapeutics 1981; 218: 739–739
  • Craven P.A., DeRubertis F.R. Restoration of the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide, and related activators by heme and hemeproteins. Evidence for involvement of the paramagnetic nitrosyl-heme complex in enzyme activation. Journal of Biological Chemistry 1978; 253: 8433–8433
  • Ignarro L.J., Degnan J.N., Baricos W.H., Kadowitz P.J., Wolin M.S. Activation of purified guanylate cyclase by nitric oxide requires heme. Comparison of heme-deficient, heme-reconstituted and heme-containing forms of soluble enzyme from bovine lung. Biochimica et Biophysica Acta 1982; 718: 49–49
  • Furchgott R.F. Vasodilation: Vascular Smooth Muscle, Peptides, Autonomic Nerves and Endothelium, P.M. Vanhoutte. Raven Press, New York 1988; 401–401
  • Ignarro L.J., Buga G.M., Wood K.S., Byrns R.E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences of the United States of America 1987; 84: 9265–9265
  • Ignarro L.J., Byrns R.E., Wood K.S. Vasodilation: Vascular Smooth Muscle, Peptides, Autonomic Nerves and Endothelium, P.M. Vanhoutte. Raven Press, New York 1988; 427–427
  • Palmer R.M., Ferrige A.G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524–524
  • Palmer R.M., Ashton D.S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664–664
  • Palmer R.M., Moncada S. A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vascular endothelial cells. Biochemical and Biophysical Research Communications 1989; 158: 348–348
  • Azuma H., Ishikawa M., Sekizaki S. Endothelium-dependent inhibition of platelet aggregation. British Journal of Pharmacology 1986; 88: 411–411
  • Furlong B., Henderson A.H., Lewis M.J., Smith J.A. Endothelium-derived relaxing factor inhibits in vitro platelet aggregation. British Journal of Pharmacology 1987; 90: 687–687
  • Radomski M.W., Palmer R.M., Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 1987; 2: 1057–1057
  • Radomski M.W., Palmer R.M., Moncada S. The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. British Journal of Pharmacology 1987; 92: 639–639
  • Aisaka K., Gross S.S., Griffith O.W., Levi R. NG-methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is a potent pressor agent in the guinea pig: does nitric oxide regulate blood pressure in vivo?. Biochemical and Biophysical Research Communications 1989; 160: 881–881
  • Whittle B.J., Lopez-Belmonte J., Rees D.D. Modulation of the vasodepressor actions of acetylcholine, bradykinin, substance P and endothelin in the rat by a specific inhibitor of nitric oxide formation. British Journal of Pharmacology 1989; 98: 646–646
  • Rees D.D., Palmer R.M., Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proceedings of the National Academy of Sciences of the United States of America 1989; 86: 3375–3375
  • Vallance P., Collier J., Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 1989; 2: 997–997
  • Vallance P., Collier J., Moncada S. Nitric oxide synthesised from L-arginine mediates endothelium dependent dilatation in human veins in vivo. Cardiovascular Research 1989; 23: 1053–1053
  • Deguchi T. Endogenous activating factor for guanylate cyclase in synaptosomal-soluble fraction of rat brain. Journal of Biological Chemistry 1977; 252: 7617–7617
  • Deguchi T., Yoshioka M. L-Arginine identified as an endogenous activator for soluble guanylate cyclase from neuroblastoma cells. Journal of Biological Chemistry 1982; 257: 10147–10147
  • Knowles R.G., Palacios M., Palmer R.M., Moncada S. Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proceedings of the National Academy of Sciences of the United States of America 1989; 86: 5159–5159
  • Garthwaite J., Charles S.L., Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 1988; 336: 385–385
  • Ferrendelli J.A., Chang M.M., Kinscherf D.A. Elevation of cyclic GMP levels in central nervous system by excitatory and inhibitory amino acids. Journal of Neurochemistry 1974; 22: 535–535
  • Garthwaite J., Balazs R. Excitatory amino acid-induced changes in cyclic GMP levels in slices and cell suspensions from the cerebellum. Advances in Biochemical Psychopharmacology 1981; 27: 317–317
  • Bredt D.S., Snyder S.H. Nitric oxide media glutamate-linked enhancement of cGMP levels in the cerebellum. Proceedings of the National Academy of Sciences of the United States of America 1989; 86: 9030–9030
  • Garthwaite J., Garthwaite G., Palmer R.M., Moncada S. NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. European Journal of Pharmacology 1989; 172: 413–413
  • Bredt D.S., Snyder S.H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proceedings of the National Academy of Sciences of the United States of America 1990; 87: 682–682
  • Mayer B., John M., Böhme E. Purification of a Ca2+/calmodulin-dependent nitric oxide synthase from porcine cerebellum. Cofactor-role of tetrahydrobiopterin. FEBS Letters 1990; 277: 215–215
  • Schmidt H.H.H.W., Pollock J.S., Nakane M., Gorsky L.D., Forstermann U., Murad F. Purification of a soluble isoform of guanylyl cyclase-activating-factor synthase. Proceedings of the National Academy of Sciences of the United States of America 1991; 88: 365–365
  • Hevel J.M., White K.A., Marletta M.A. Purification of the inducible murine macrophage nitric oxide synthase. Identification as a flavoprotein. Journal of Biological Chemistry 1991; 226: 22789–22789
  • Yui Y., Hattori R., Kosuga K., Eizawa H., Hiki K., Kawai C. Purification of nitric oxide synthase from rat macrophages. Journal of Biological Chemistry 1991; 266: 12544–12544
  • Stuehr D.J., Cho H.J., Kwon N.S., Weise M.F., Nathan C.F. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. Proceedings of the National Academy of Sciences of the United States of America 1991; 88: 7773–7773
  • Evans T., Carpenter A., Cohen J. Purification of a distinctive form of endotoxin-induced nitric oxide synthase from rat liver. Proceedings of the National Academy of Sciences of the United States of America 1992; 89: 5361–5361
  • Pollock J.S., Forstermann U., Mitchell J.A., Warner T.D., Schmidt H.H., Nakane M., Murad F. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 1991; 88: 10480–10480
  • Bredt D.S., Hwang P.M., Glatt C.E., Lowenstein C., Reed R.R., Snyder S.H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 1991; 351: 714–714
  • Nakane M., Schmidt H.H., Pollock J.S., Forstermann U., Murad F. Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Letters 1993; 316: 175–175
  • Sessa W.C., Harrison J.K., Barber C.M., Zeng D., Durieux M.E., D'Angelo D.D., Lynch K.R., Peach M.J. Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase. Journal of Biological Chemistry 1992; 267: 15274–15274
  • Lamas S., Marsden P.A., Li G.K., Tempst P., Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proceedings of the National Academy of Sciences of the United States of America 1992; 89: 6348–6348
  • Janssens S.P., Shimouchi A., Quertermous T., Bloch D.B., Bloch K.D. Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. Journal of Biological Chemistry 1992; 267: 14519–14519
  • Lyons C.R., Orloff G.J., Cunningham J.M. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. Journal of Biological Chemistry 1992; 267: 6370–6370
  • Xie Q.W., Cho H.J., Calaycay J., Mumford R.A., Swiderek K.M., Lee T.D., Ding A., Troso T., Nathan C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 1992; 256: 225–225
  • Lowenstein C.J., Glatt C.S., Bredt D.S., Snyder S.H. Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme. Proceedings of the National Academy of Sciences of the United States of America 1992; 89: 6711–6711
  • Geller D.A., Lowenstein C.J., Shapiro R.A., Nussler A.K., Di Silvio M., Wang S.C., Nakayama D.K., Simmons R.L., Snyder S.H., Billiar T.R. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proceedings of the National Academy of Sciences of the United States of America 1993; 90: 3491–3491
  • Moncada S., Palmer R.M., Higgs E.A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacological Reviews 1991; 43: 109–109
  • Pufahl R.A., Nanjappan P.G., Woodard R.W., Marletta M.A. Mechanistic probes of N-hydroxylation of L-arginine by the inducible nitric oxide synthase from murine macrophages. Biochemistry 1992; 31: 6822–6822
  • Feldman P.L., Griffith O.W., Hong H., Stuehr D.J. Irreversible inactivation of macrophage and brain nitric oxide synthase by L-NG-methylarginine requires NADPH-dependent hydroxylation. Journal of Medicinal Chemistry 1993; 36: 491–491
  • Dwyer M.A., Bredt D.S., Snyder S.H. Nitric oxide synthase: irreversible inhibition by L-NG-nitroarginine in brain in vitro and in vivo. Biochemical and Biophysical Research Communications 1991; 176: 1136–1136
  • Klatt P., Schmidt K., Uray G., Mayer B. Multiple catalytic functions of brain nitric oxide synthase. Biochemical characterization, cofactor-requirement, and the role of N omega-hydroxy-L-arginine as an intermediate. Journal of Biological Chemistry 1993; 268: 14781–14781
  • Zhang Z.G., Reif D., Macdonald J., Tang W.X., Kamp D.K., Gentile R.J., Shakespeare W.C., Murray R.J., Chopp M. ARL 17477, a potent and selective neuronal NOS inhibitor decreases infarct volume after transient middle cerebral artery occlusion in rats. Journal of Cerebral Blood Flow and Metabolism 1996; 16: 599–599
  • Stuehr D.J., Kwon N.S., Nathan C.F., Griffith O.W., Feldman P.L., Wiseman J. N omega-hydroxy-L-arginine is an intermediate in the biosynthesis of nitric oxide from L-arginine. Journal of Biological Chemistry 1991; 266: 6259–6259
  • White K.A., Marletta M.A. Nitric oxide synthase is a cytochrome P-450 type hemoprotein. Biochemistry 1992; 31: 6627–6627
  • Griffith O.W., Stuehr D.J. Nitric oxide synthases: properties and catalytic mechanism. Annual Review of Physiology 1995; 57: 707–707
  • Crane B.R., Arvai A.S., Ghosh D.K., Wu C., Getzoff E.D., Stuehr D.J., Tainer J.A. Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 1998; 279: 2121–2121
  • Pou S., Pou W.S., Bredt D.S., Snyder S.H., Rosen G.M. Generation of superoxide by purified brain nitric oxide synthase. Journal of Biological Chemistry 1992; 267: 24173–24173
  • Vorherr T., Knöpfel L., Hofmann F., Mollner S., Pfeuffer T., Carafoli E. The calmodulin binding domain of nitric oxide synthase and adenylyl cyclase. Biochemistry 1993; 32: 6081–6081
  • Burnstock G. Review lecture. Neurotransmitters and trophic factors in the autonomic nervous system. Journal of Physiology 1981; 313: 1–1
  • Gillespie J.S., Liu X.R., Martin W. The effects of L-arginine and NG-monomethyl L-arginine on the response of the rat anococcygeus muscle to NANC nerve stimulation. British Journal of Pharmacology 1989; 98: 1080–1080
  • Li C.G., Rand M.J. Evidence for a role of nitric oxide in the neurotransmitter system mediating relaxation of the rat anococcygeus muscle. Clinical and Experimental Pharmacology Physiology 1989; 16: 933–933
  • Bredt D.S., Hwang P.M., Snyder S.H. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 1990; 347: 768–768
  • Huang P.L., Dawson T.M., Bredt D.S., Snyder S.H., Fishman M.C. Targeted disruption of the neuronal nitric oxide synthase gene. Cell 1993; 75: 1273–1273
  • Chung E., Curtis D., Chen G., Marsden P.A., Twells R., Xu W., Gardiner M. Genetic evidence for the neuronal nitric oxide synthase gene (NOSI) as a susceptibility locus for infantile pyloric stenosis. American Journal of Human Genetics 1996; 58: 363–363
  • Iadecola C., Zhang F., Xu X. Role of nitric oxide synthase-containing vascular nerves in cerebrovasodilation elicited from cerebellum. American Journal of Physiology 1993; 264: R738–R738
  • Nozaki K., Moskowitz M.A., Maynard K.I., Koketsu N., Dawson T.M., Bredt D.S., Snyder S.H. Possible origins and distribution of immunoreactive nitric oxide synthasecontaining nerve fibers in cerebral arteries. Journal of Cerebral Blood Flow and Metabolism 1993; 13: 70–70
  • Welch K.M. Drug therapy of migraine. New England Journal of Medicine 1993; 329: 1476–1476
  • Iversen H.K., Olesen J. Headache induced by a nitric oxide donor (nitroglycerin) responds to sumatriptan. A human model for development of migraine drugs. Cephalalgia 1996; 16: 412–412
  • Irikura K., Huang P.L., Ma J., Lee W.S., Dalkara T., Fishman M.C., Dawson T.M., Snyder S.H., Moskowitz M.A. Cerebrovascular alterations in mice lacking neuronal nitric oxide synthase gene expression. Proceedings of the National Academy of Sciences of the United States of America 1995; 92: 6823–6823
  • Burnett A.L., Tillman S.L., Chang T.S., Epstein J.I., Lowenstein C.J., Bredt D.S., Snyder S.H., Walsh P.C. Immunohistochemical localization of nitric oxide synthase in the autonomic innervation of the human penis. Journal of Urology 1993; 150: 73–73
  • Burnett A.L., Lowenstein C.J., Bredt D.S., Chang T.S., Snyder S.H. Nitric oxide: a physiologic mediator of penile erection. Science 1992; 257: 401–401
  • Rajfer J., Aronson W.J., Bush P.A., Dorey F.J., Ignarro L.J. Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic, non-cholinergic neurotransmission. New England Journal of Medicine 1992; 326: 90–90
  • Burnett A.L., Nelson R.J., Calvin D.C., Liu J.X., Demas G.E., Klein S.L., Kriegsfeld L.J., Dawson V.L., Dawson T.M., Snyder S.H. Nitric oxide-dependent penile erection in mice lacking neuronal nitric oxide synthase. Molecular Medicine 1996; 2: 288–288
  • Vernet D., Cai L., Garban H., Babbitt M.L., Murray F.T., Rajfer J., Gonzalez-Cadavid N.F. Reduction of penile nitric oxide synthase in diabetic BB/WORdp (type I) and BBZ/WORdp (type II) rats with erectile dysfunction. Endocrinology 1995; 136: 5709–5709
  • Carrier S., Nagaraju P., Morgan D.M., Baba K., Nunes L., Lue T.F. Age decreases nitric oxide synthase-containing nerve fibers in the rat penis. Journal of Urology 1997; 157: 1088–1088
  • Penson D.F., Ng C., Cai L., Rajfer J., Gonzalez-Cadavid N.F. Androgen and pituitary control of penile nitric oxide synthase and erectile function in the rat. Biology of Reproduction 1996; 55: 567–567
  • Boolel M., Allen M.J., Ballard S.A., Gepi-Attee S., Muirhead G.J., Naylor A.M., Osterloh I.H., Gingell C. Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. International Journal of Impotence Research 1996; 8: 47–47
  • Ballard S.A., Gingell C.J., Tang K., Turner L.A., Price M.E., Naylor A.M. Effects of sildenafil on the relaxation of human corpus cavernosum tissue in vitro and on the activities of cyclic nucleotide phosphodiesterase isozymes. Journal of Urology 1998; 159: 2164–2164
  • Goldstein I., Lue T.F., Padma-Nathan H., Rosen R.C., Steers W.D., Wicker P.A. Oral sildenafil in the treatment of erectile dysfunction. Sildenafil Study Group. New England Journal of Medicine 1998; 338: 1397–1397
  • Chuang A.T., Strauss J.D., Murphy R.A., Steers W.D. Sildenafil, a type-5 CGMP phosphodiesterase inhibitor, specifically amplifies endogenous cGMP-dependent relaxation in rabbit corpus cavernosum smooth muscle in vitro. Journal of Urology 1998; 160: 257–257
  • Schuman E.M., Madison D.V. Nitric oxide and synaptic function. Annual Reviews of Neuroscience 1994; 17: 153–153
  • Shibuki K., Okada D. Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature 1991; 349: 326–326
  • Son H., Hawkins R.D., Martin K., Kiebler M., Huang P.L., Fishman M.C., Kandel E.R. Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 1996; 87: 1015–1015
  • Hirsch D.B., Steiner J.P., Dawson T.M., Mammen A., Hayek E., Snyder S.H. Neurotransmitter release regulated by nitric oxide in PC-12 cells and brain synaptosomes. Current Biology 1993; 3: 749–749
  • Lonart G., Wang J., Johnson K.M. Nitric oxide induces neurotransmitter release from hippocampal slices. European Journal of Pharmacology 1992; 220: 271–271
  • Dickie B.G., Lewis M.J., Davies J.A. NMDA-induced release of nitric oxide potentiates aspartate overflow from cerebellar slices. Neuroscience Letters 1992; 138: 145–145
  • Montague P.R., Gancayco C.D., Winn M.J., Marchase R.B., Friedlander M.J. Role of NO production in NMDA receptor-mediated neurotransmitter release in cerebral cortex. Science 1994; 263: 973–973
  • Hanbauer I., Wink D., Osawa Y., Edelman G.M., Gally J.A. Role of nitric oxide in NMDA-evoked release of [3H]-dopamine from striatal slices. Neuroreport 1992; 3: 409–409
  • McCann S.M., Rettori V. The role of nitric oxide in reproduction. Proceedings of the Society for Experimental Biology and Medicine 1996; 211: 7–7
  • Rettori V., Belova N., Dees W.L., Nyberg C.L., Gimeno M., McCann S.M. Role of nitric oxide in the control of luteinizing hormone-releasing hormone release in vivo and in vitro. Proceedings of the National Academy of Sciences of the United States of America 1993; 90: 10130–10130
  • Mani S.K., Allen J.M., Rettori V., McCann S.M., O'Malley B.W., Clark J.H. Nitric oxide mediates sexual behavior in female rats. Proceedings of the National Academy of Sciences of the United States of America 1994; 91: 6468–6468
  • Rettori V., Canteros G., Renoso R., Gimeno M., McCann S.M. Oxytocin stimulates the release of luteinizing hormone-releasing hormone from medial basalhypothalamic explants by releasing nitric oxide. Proceedings of the National Academy of Sciences of the United States of America 1997; 94: 2741–2741
  • Wu H.H., Williams C.V., McLoon S.C. Involvement of nitric oxide in the elimination of a transient retinotectal projection in development. Science 1994; 265: 1593–1593
  • Hawkins R.D. NO honey, I don't remember. Neuron 1996; 16: 465–465
  • Kendrick K.M., Guevara-Guzman R., Zorrilla J., Hinton M.R., Broad K.D., Mimmack M., Ohkura S. Formation of olfactory memories mediated by nitric oxide. Nature 1997; 388: 670–670
  • Meller S.T., Gebhart G.F. Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain 1993; 52: 127–127
  • Crosby G., Marota J.J., Huang P.L. Intact nociception-induced neuroplasticity in transgenic mice deficient in neuronal nitric oxide synthase. Neuroscience 1995; 69: 1013–1013
  • Silvagno F., Xia H., Bredt D.S. Neuronal nitric oxide synthase-m, an alternatively spliced isoform expressed in differentiated skeletal muscle. Journal of Biological Chemistry 1996; 271: 11204–11204
  • Kobzik L., Reid M.B., Bredt D.S., Stamler J.S. Nitric oxide in skeletal muscle. Nature 1994; 372: 546–546
  • Boczkowski J., Lanone S., Ungureanu-Longrois D., Danialou G., Fournier T., Aubier M. Induction of diaphragmatic nitric oxide synthase after endotoxin, administration in rats: role on diaphragmatic contractile dysfunction. Journal of Chemical Investigation 1996; 98: 1550–1550
  • McAllister R.M., Hirai T., Musch T.I. Contribution of endothelium-derived nitric oxide (EDNO) to the skeletal muscle blood flow response to exercise. Medicine and Science in Sports and Exercise 1995; 27: 1145–1145
  • Corcondilas A., Koroxenidis G.T., Shepherd J.T. Effect of a brief contraction of forearm muscles on forearm blood flow. Journal of Applied Physiology 1964; 19: 142–142
  • Hussain S.N., Stewart D.J., Ludemann J.P., Magder S. Role of endothelium-derived relaxing factor in active hyperemia of the canine diaphragm. Journal of Applied Physiology 1992; 72: 2393–2393
  • Hirai T., Visneski M.D., Kearns K.J., Zelis R., Musch T.I. Effects of NO synthase inhibition on the muscular blood flow response to treadmill exercise in rats. Journal of Applied Physiology 1994; 77: 1288–1288
  • Dyke C.K., Proctor D.N., Dietz N.M., Joyner M.J. Role of nitric oxide in exercise hyperaemia during prolonged rhythmic handgripping in humans. Journal of Physiology 1995; 488: 259–259
  • Anderson K.M., Faber J.E. Differential sensitivity of arteriolar alpha 1-and alpha 2-adrenoceptor constriction to metabolic inhibition during rat skeletal muscle contraction. Circulation Research 1991; 69: 174–174
  • Thomas G.D., Hansen J., Victor R.G. Inhibition of alpha 2-adrenergic vasoconstriction during contraction of glycolytic, not oxidative, rat hindlimb muscle. American Journal of Physiology 1994; 266: H920–H920
  • Thomas G.D., Victor R.G. Nitric oxide mediates contraction-induced attenuation of sympathetic vasoconstriction in rat skeletal muscle. Journal of Physiology 1998; 506: 817–817
  • Thomas G.D., Sander M., Lau K.S., Huang P.L., Stull J.T., Victor R.G. Proceedings of the National Academy of Sciences 1999, in press
  • Brenman J.E., Chao D.S., Xia H., Aldape K., Bredt D.S. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 1995; 82: 743–743
  • Brenman J.E., Chao D.S., Gee S.H., McGee A.W., Craven S.E., Santillano D.R., Huang F., Xia H., Peters M.F., Froehner S.C., Bredt D.S. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and α-1 syntrophin mediated by PDZ motifs. Cell 1996; 84: 757–757
  • Chang W.J., Iannaccone S.T., Lau K.S., Masters B.S., McCabe T.J., McMillan K., Padre R.C., Spencer M.J., Tidball J.G., Stull J.T. Neuronal nitric oxide synthase and dystrophin-deficient muscular dystrophy. Proceedings of the National Academy of Sciences of the United States of America 1996; 93: 9142–9142
  • Webster C., Silberstein L., Hays A.P., Blau H.M. Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell 1988; 52: 503–503
  • Lau K.S., Grange R.W., Chang W.J., Kamm K.E., Sarelius I., Stull J.T. Skeletal muscle contractions stimulate cGMP formation and attenuate vascular smooth muscle myosin phosphorylation via nitric oxide. FEBS Letters 1998; 431: 71–71
  • Balon T.W., Nadler J.L. Evidence that nitric oxide increases glucose transport in skeletal muscle. Journal of Applied Physiology 1997; 82: 359–359
  • Tidball J.G., Lavergne B., Lau K.S., Spencer M.J., Stull J.T., Wehling M. Mechanical loading regulates NOS expression and activity in developing and adult skeletal muscle. American Journal of Physiology 1998; 275: C260–C260
  • Chao D.S., Silvagno F., Bredt D.S. Muscular dystrophy in mdx mice despite lack of neuronal nitric oxide synthase. Journal of Neurochemistry 1998; 71: 784–784
  • Crosbie R.H., Straub V., Yun H.Y., Lee J.C., Rafael J.A., Chamberlain J.S., Dawson V.L., Dawson T.M., Campbell K.P. mdx muscle pathology is independent of nNOS perturbation. Human Molecular Genetics 1998; 7: 823–823
  • Chao D.S., Gorospe R.M., Brenman J.E., Rafael J.A., Peters M.F., Froehner S.C., Hoffman E.P., Chamberlain J.S., Bredt D.S. Selective loss of sarcolemmal nitric oxide synthase in Becker Muscular Dystrophy. Journal of Experimental Medicine 1996; 184: 609–609
  • Daniel E.E., Haugh C., Woskowska Z., Cipris S., Jury J., Fox-Threlkeld J.E. Role of nitric oxide-related inhibition in intestinal function: relation to vasoactive intestinal polypeptide. American Journal of Physiology 1994; 266: G31–G31
  • Mashimo H., He X.D., Huang P.L., Fishman M.C., Goyal R.K. Neuronal constitutive nitric oxide synthase is involved in murine enteric inhibitory neurotransmission. Journal of Clinical Investigation 1996; 98: 8–8
  • Kornau H.-C., Seeburg P.H., Kennedy M.B. Interaction of ion channels and receptors with PDZ domains. Current Opinions in Neurobiology 1997; 7: 368–368
  • Sheng M. PDZs and receptor/channel clustering: rounding up the latest suspects [comment]. Neuron 1996; 17: 575–575
  • Jaffrey S.R., Snyder S.H. PIN: An associated protein inhibitor of neuronal nitric oxide synthase. Science 1996; 274: 774–774
  • Choi D.W. Glutamate receptors and the induction of excitotoxic neuronal death. Progress in Brain Research 1994; 100: 47–47
  • Simon R.P., Swan J.H., Griffiths T., Meldrum B.S. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 1984; 226: 850–850
  • Dawson V.L., Dawson T.M., London E.D., Bredt D.S., Snyder S.H. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proceedings of the National Academy of Sciences of the United States of America 1991; 88: 6368–6368
  • Dawson V.L., Kizushi V.M., Huang P.L., Snyder S.H., Dawson T.M. Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. Journal of Neuroscience 1996; 16: 2479–2479
  • Dawson V.L., Dawson T.M. Nitric oxide in neuronal degeneration. Proceeding of the Society for Experimental Biology and Medicine 1996; 211: 33–33
  • Huang Z., Huang P.L., Panahian N., Dalkara T., Fishman M.C., Moskowitz M.A. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 1994; 265: 1883–1883
  • Huang Z., Huang P.L., Ma J., Meng W., Ayata C., Fishman M.C., Moskowitz M.A. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. Journal of Cerebral Blood Flow and Metabolism 1996; 16: 981–981
  • Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends in Neuroscience 1997; 20: 132–132
  • Stamler J.S. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 1994; 78: 931–931
  • Drapier J.C., Hibbs J.B., Jr. Aconitases: a class of metalloproteins highly sensitive to nitric oxide synthesis. Methods in Enzymology 1996; 269: 26–26
  • Brown G.C. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Letters 1995; 369: 136–136
  • Beckman J.S., Koppenol W.H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. A American Journal of Physiology 1996; 271: C1424–C1424
  • Kinouchi H., Epstein C.J., Mizui T., Carlson E., Chen S.F., Chan P.H. Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proceedings of the National Academy of Sciences of the United States of America 1991; 88: 11158–11158
  • Samdani A.F., Dawson T.M., Dawson V.L. Nitric oxide synthase in models of focal ischemia. Stroke 1997; 28: 1283–1283
  • Ferrante R.J., Kowall N.W., Beal M.F., Richardson E.P., Bird E.D., Martin J.B. Selective sparing of a class of striatal neurons in Huntington's disease. Science 1985; 230: 561–561
  • Koh J.Y., Peters S., Choi D.W. Neurons containing NADPH-diaphorase are selectively resistant to quinolinate toxicity. Science 1986; 234: 73–73
  • Inagaki S., Suzuki K., Taniguchi N., Takagi H. Localization of Mn-superoxide dismutase (Mn-SOD) in cholinergic and somatostatin-containing neurons in the rat neostriatum. Brain Research 1991; 549: 174–174
  • Galpern W.R., Matthews R.T., Beal M.F., Isacson O. NGF attenuates 3-nitrotyrosine formation in a 3-NP model of Huntington's disease. Neuroreport 1996; 7: 2639–2639
  • Hantraye P., Brouillet E., Ferrante R., Palfi S., Dolan R., Matthews R.T., Beal M.F. Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nature Medicine 1996; 2: 1017–1017
  • Przedborski S., Jackson-Lewis V., Yokoyama R., Shibata T., Dawson V.L., Dawson T.M. Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America 1996; 93: 4565–4565
  • Polymeropoulos M.H., Lavedan C., Leroy E., Ide S.E., Dehejia A., Dutra A., Pike B., Root H., Rubenstein J., Boyer R., Stenroos E.S., Chandrasekharappa S., Athanassiadou Golbe L.I., Nussbaum R.L. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 1997; 276: 2045–2045
  • Davies S.W., Turmaine M., Cozens B.A., DiFiglia M., Sharp A.H., Ross C.A., Scherzinger E., Wanker E.E., Mangiarini L., Bates G.P. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997; 90: 537–537
  • Christopherson K.S., Bredt D.S. Nitric oxide in excitable tissues: physiological roles and disease. Journal of Clinical Investigation 1997; 100: 2424–2424

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.