3,350
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Recent progress in the development of nanomaterials targeting multiple cancer metabolic pathways: a review of mechanistic approaches for cancer treatment

, , &
Pages 1-18 | Received 19 Aug 2022, Accepted 01 Nov 2022, Published online: 03 Jan 2023

References

  • Adityan S, Tran M, Bhavsar C, et al. (2020). Nano-therapeutics for modulating the tumour microenvironment: Design, development, and clinical translation. J Control Release 327:512–32.
  • Afshari AR, Jalili-Nik M, Soukhtanloo M, et al. (2019). Auraptene-induced cytotoxicity mechanisms in human malignant glioblastoma (U87) cells: role of reactive oxygen species (ROS). Excli J 18:576–90.
  • Aghebati-Maleki A, Dolati S, Ahmadi M, et al. (2020). Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J Cell Physiol 235:1962–72.
  • Alamzadeh Z, Beik J, Mirrahimi M, et al. (2020). Gold nanoparticles promote a multimodal synergistic cancer therapy strategy by co-delivery of thermo-chemo-radio therapy. Eur J Pharm Sci 145:105235.
  • Alexander ET, Mariner K, Donnelly J, et al. (2020). Polyamine blocking therapy decreases survival of tumor-infiltrating immunosuppressive myeloid cells and enhances the antitumor efficacy of PD-1 blockade. Mol Cancer Ther 19:2012–22.
  • Amani H, Habibey R, Shokri F, et al. (2019). Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling. Sci Rep 9:1–15.
  • Amin M, Tang S, Shalamanova L, et al. (2021). Polyamine biomarkers as indicators of human disease. Biomarkers 26:77–94.
  • Anniebell S, Gopinath SC. (2018). Polymer conjugated gold nanoparticles in biomedical applications. Curr Med Chem 25:1433–45.
  • Anselmo AC, Mitragotri S. (2016). Nanoparticles in the clinic. Bioeng Transl Med 1:10–29.
  • Auría-Soro C, Nesma T, Juanes-Velasco P, et al. (2019). Interactions of nanoparticles and biosystems: microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials 9:1365.
  • Baig N, Kammakakam I, Falath W. (2021). Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater Adv 2:1821–71.
  • Benfeitas R, Uhlen M, Nielsen J, et al. (2017). New challenges to study heterogeneity in cancer redox metabolism. Front Cell Dev Biol 5:65.
  • Bian W, Wang Y, Pan Z, et al. (2021). Review of functionalized nanomaterials for photothermal therapy of cancers. ACS Appl Nano Mater 4:11353–85.
  • Bidkhori G, Benfeitas R, Klevstig M, et al. (2018). Metabolic network-based stratification of hepatocellular carcinoma reveals three distinct tumor subtypes. Proc Natl Acad Sci U S A 115:E11874–E11883.
  • Bonnet S, Archer SL, Allalunis-Turner J, et al. (2007). A mitochondria-K + channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51.
  • Bray F, Laversanne M, Weiderpass E, et al. (2021). The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 127:3029–30.
  • Busk M, Horsman MR, Kristjansen PEG, et al. (2008). Aerobic glycolysis in cancers: implications for the usability of oxygen-responsive genes and fluorodeoxyglucose-PET as markers of tissue hypoxia. Int J Cancer 122:2726–34.
  • Casero RA, Stewart TM, Pegg AE. (2018). Polyamine metabolism and cancer: treatments, challenges and opportunities. Nat Rev Cancer 18:681–95.
  • Chang X, Li J, Niu S, et al. (2021). Neurotoxicity of metal-containing nanoparticles and implications in glial cells. J Appl Toxicol 41:65–81.
  • Chen Z, Shi T, Zhang L, et al. (2016). Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett 370:153–64.
  • Counihan JL, Grossman EA, Nomura DK. (2018). Cancer metabolism: current understanding and therapies. Chem Rev 118:6893–923.
  • Dagogo-Jack I, Shaw AT. (2018). Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15:81–94.
  • Dang CV. (2010). Rethinking the Warburg effect with myc micromanaging glutamine metabolismmyc micromanaging metabolism. Cancer Res 70:859–62.
  • DeBerardinis RJ, Chandel NS. (2016). Fundamentals of cancer metabolism. Sci Adv 2:e1600200.
  • Deng Y, Jia F, Chen X, et al. (2020). ATP suppression by pH-activated mitochondria-targeted delivery of nitric oxide nanoplatform for drug resistance reversal and metastasis inhibition. Small 16:2001747.
  • Dhumal D, Lan W, Ding L, et al. (2021). An ionizable supramolecular dendrimer nanosystem for effective siRNA delivery with a favorable safety profile. Nano Res 14:2247–54.
  • Dusek CO, Hadden MK. (2021). Targeting the GLI family of transcription factors for the development of anti-cancer drugs. Expert Opin Drug Discov 16:289–302.
  • Dzobo K, Senthebane DA, Ganz C, et al. (2020). Advances in therapeutic targeting of cancer stem cells within the tumor microenvironment: an updated review. Cells 9:1896.
  • Elgogary A, Xu Q, Poore B, et al. (2016). Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proc Natl Acad Sci U S A 113:E5328–E5336.
  • Ertas YN, Abedi Dorcheh K, Akbari A, et al. (2021). Nanoparticles for targeted drug delivery to cancer stem cells: a review of recent advances. Nanomaterials 11:1755.
  • Feissner RF, et al. (2009). Crosstalk signaling between mitochondrial Ca2+ and ROS. Frontiers in Bioscience: a Journal and Virtual Library 14:1197.
  • Finicle BT, Jayashankar V, Edinger AL. (2018). Nutrient scavenging in cancer. Nat Rev Cancer 18:619–33.
  • Gaglio D, Metallo CM, Gameiro PA, et al. (2011). Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 7:523.
  • Gimeno-Benito I, Giusti A, Dekkers S, et al. (2021). A review to support the derivation of a worst-case dermal penetration value for nanoparticles. Regul Toxicol Pharmacol 119:104836.
  • Guimarães PPG, Gaglione S, Sewastianik T, et al. (2018). Nanoparticles for immune cytokine TRAIL-based cancer therapy. ACS Nano 12:912–31.
  • Gutteridge REA, Ndiaye MA, Liu X, et al. (2016). Plk1 inhibitors in cancer therapy: from laboratory to clinics. Mol Cancer Ther 15:1427–35.
  • Hamida RS, Albasher G, Bin-Meferij MM. (2020). Oxidative stress and apoptotic responses elicited by nostoc-synthesized silver nanoparticles against different cancer cell lines. Cancers 12:2099.
  • Hao Y, Samuels Y, Li Q, et al. (2016). Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer. Nat Commun 7:11971–13.
  • Hassounah NB, Bunch TA, McDermott KM. (2012). Molecular pathways: the role of primary cilia in cancer progression and therapeutics with a focus on hedgehog signaling primary cilia in Cancer: Impact on Hedgehog-targeted therapy. Clin Cancer Res 18:2429–35.
  • Horie M, Tabei Y. (2021). Role of oxidative stress in nanoparticles toxicity. Free Radic Res 55:331–42.
  • Huang Z, Zhang M, Plec AA, et al. (2018). ACSS2 promotes systemic fat storage and utilization through selective regulation of genes involved in lipid metabolism. Proc Natl Acad Sci U S A 115:E9499–E9506.
  • Ion R-M, A-A, Sorescu, A. Nuta. (2021). Green synthesis of lanthanides and actinides-based nanomaterials. In: Handbook of greener synthesis of nanomaterials and compounds. Elsevier, 355–388.
  • Jalili-Nik M, Sadeghi MM, Mohtashami E, et al. (2020). Zerumbone promotes cytotoxicity in human malignant glioblastoma cells through reactive oxygen species (ROS) generation. Oxid Med Cell Longev 2020:3237983.
  • Jones RG, Thompson CB. (2009). Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23:537–48.
  • Kamphorst JJ, Nofal M, Commisso C, et al. (2015). Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res 75:544–53.
  • Khiavi MA, et al. (2020). PEGylated gold nanoparticles-ribonuclease induced oxidative stress and apoptosis in colorectal cancer cells. BioImpacts: BI 10:27.
  • Khot VM, Salunkhe AB, Pricl S, et al. (2021). Nanomedicine-driven molecular targeting, drug delivery, and therapeutic approaches to cancer chemoresistance. Drug Discov Today 26:724–39.
  • Khurana RK, Jain A, Jain A, et al. (2018). Administration of antioxidants in cancer: debate of the decade. Drug Discov Today 23:763–70.
  • Kianfar E. (2021). Magnetic nanoparticles in targeted drug delivery: a review. J Supercond Nov Magn 34:1709–35.
  • Kim J, Cho HR, Jeon H, et al. (2017). Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J Am Chem Soc 139:10992–5.
  • Kim J, DeBerardinis RJ. (2019). Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metab 30:434–46.
  • Kim SM, Nguyen TT, Ravi A, et al. (2018). PTEN deficiency and AMPK activation promote nutrient scavenging and anabolism in prostate cancer CellsPTEN loss and AMPK promote nutrient scavenging. Cancer Discov 8:866–83.
  • Kong N, Zhang R, Wu G, et al. (2022). Intravesical delivery of KDM6A-mRNA via mucoadhesive nanoparticles inhibits the metastasis of bladder cancer. Proc Natl Acad Sci Usa 119:e2112696119.
  • Lai Y, Tang F, Huang Y, et al. (2021). The tumour microenvironment and metabolism in renal cell carcinoma targeted or immune therapy. J Cell Physiol 236:1616–27.
  • Lambies G, C. Commisso. (2022). Macropinocytosis and cancer: from tumor stress to signaling pathways. In: Macropinocytosis. Switzerland: Springer, 15–40.
  • Landen CN, Chavez-Reyes A, Bucana C, et al. (2005). Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 65:6910–8.
  • Lee KS, Chung HC, Im SA, et al. (2008). Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 108:241–50.
  • Lee S, Koo H, Na JH, et al. (2014). Chemical tumor-targeting of nanoparticles based on metabolic glycoengineering and click chemistry. ACS Nano 8:2048–63.
  • Lin L, Pang W, Jiang X, et al. (2022). Light amplified oxidative stress in tumor microenvironment by carbonized hemin nanoparticles for boosting photodynamic anticancer therapy. Light Sci Appl 11:1–16.
  • Lin L-S, Huang T, Song J, et al. (2019). Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J Am Chem Soc 141:9937–45.
  • Lin L-SSJ, Song L, Ke K, Liu Y, Zhou Z, Shen Z, Li J, Yang Z, Tang W, Niu G, Yang H-H, Chen X. (2018). Simultaneous fenton-like ion delivery and glutathione depletion by MnO 2-based nanoagent to enhance chemodynamic therapy. Angew Chem Int Ed 57:4902–6.
  • Lisanti MP, Martinez-Outschoorn UE, Chiavarina B, et al. (2010). Understanding the ‘lethal’ drivers of tumor-stroma co-evolution: emerging role (s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor microenvironment. Cancer Biol Ther 10:537–42.
  • Liu C, Wang D, Zhang S, et al. (2019). Biodegradable biomimic copper/manganese silicate nanospheres for chemodynamic/photodynamic synergistic therapy with simultaneous glutathione depletion and hypoxia relief. ACS Nano 13:4267–77.
  • Liu N, Tang M. (2020). Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles. J Appl Toxicol 40:16–36.
  • Liu T, Liu W, Zhang M, et al. (2018). Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy. Acs Nano 12:12181–92.
  • Liu Z, Sun Q, Wang X. (2017). PLK1, a potential target for cancer therapy. Transl Oncol 10:22–32.
  • Lucky SS, Soo KC, Zhang Y. (2015). Nanoparticles in photodynamic therapy. Chem Rev 115:1990–2042.
  • Luengo A, Gui DY, Vander Heiden MG. (2017). Targeting metabolism for cancer therapy. Cell Chem Biol 24:1161–80.
  • Lunova M, Smolková B, Lynnyk A, et al. (2019). Targeting the mTOR signaling pathway utilizing nanoparticles: a critical overview. Cancers 11:82.
  • Maharjan PS, Bhattarai HK. (2022). Singlet oxygen, photodynamic therapy, and mechanisms of cancer cell death. J Oncol 2022:7211485.
  • Marin JJG, Al-Abdulla R, Lozano E, et al. (2016). Mechanisms of resistance to chemotherapy in gastric cancer. Anticancer Agents Med Chem 16:318–34.
  • Mashimo T, Pichumani K, Vemireddy V, et al. (2014). Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159:1603–14.
  • Mathews CK. (2015). Deoxyribonucleotide metabolism, mutagenesis and cancer. Nat Rev Cancer 15:528–39.
  • Mendes R, Carreira B, Baptista PV, et al. (2016). Non-small cell lung cancer biomarkers and targeted therapy-two faces of the same coin fostered by nanotechnology. Expert Review of Precision Medicine and Drug Development 1:155–68.
  • Menendez JA, Mehmi I, Atlas E, et al. (2004). Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-κB. Int J Oncol 24:591–608.
  • Mercier M-C, Dontenwill M, Choulier L. (2017). Selection of nucleic acid aptamers targeting tumor cell-surface protein biomarkers. Cancers 9:69.
  • Meric-Bernstam F, Gonzalez-Angulo AM. (2009). Targeting the mTOR signaling network for cancer therapy. J Clin Oncol 27:2278–87.
  • Michy, T, Massias T, Bernard C, Vanwonterghem L, Henry M, Guidetti M, Royal G, Coll JL, Texier I, Josserand V, Hurbin AA. (2019). Verteporfin-loaded lipid nanoparticles improve ovarian cancer photodynamic therapy in vitro and in vivo. Cancers 11:1760.
  • Miller DM, Thomas SD, Islam A, et al. (2012). c-Myc and cancer metabolism. Clin Cancer Res 18:5546–53.
  • Mohammadalipour A, Dumbali SP, Wenzel PL. (2020). Mitochondrial transfer and regulators of mesenchymal stromal cell function and therapeutic efficacy. Front Cell Dev Biol 8:603292.
  • Mullapudi SS, Mitra D, Li M, et al. (2020). Potentiating anti-cancer chemotherapeutics and antimicrobials via sugar-mediated strategies. Mol Syst Des Eng 5:772–91.
  • Nagao A, Kobayashi M, Koyasu S, et al. (2019). HIF-1-dependent reprogramming of glucose metabolic pathway of cancer cells and its therapeutic significance. IJMS 20:238.
  • Nguyen TB, Louie SM, Daniele JR, et al. (2017). DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Dev Cell 42:9–21. e5.
  • Nitheesh Y, Pradhan R, Hejmady S, et al. (2021). Surface engineered nanocarriers for the management of breast cancer. Mater Sci Eng C Mater Biol Appl 130:112441.
  • Olivares O, Mayers JR, Gouirand V, et al. (2017). Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun 8:16031–14.
  • Olson KA, Schell JC, Rutter J. (2016). Pyruvate and metabolic flexibility: illuminating a path toward selective cancer therapies. Trends Biochem Sci 41:219–30.
  • Ott PA, Carvajal RD, Pandit-Taskar N, et al. (2013). Phase I/II study of pegylated arginine deiminase (ADI-PEG 20) in patients with advanced melanoma. Invest New Drugs 31:425–34.
  • Palazzolo S, Bayda S, Hadla M, et al. (2018). The clinical translation of organic nanomaterials for cancer therapy: a focus on polymeric nanoparticles, micelles, liposomes and exosomes. Curr Med Chem 25:4224–68.
  • Pietrobono S, Gagliardi S, Stecca B. (2019). Non-canonical hedgehog signaling pathway in cancer: Activation of GLI transcription factors beyond smoothened. Front Genet 10:556.
  • Raez LE, Papadopoulos K, Ricart AD, et al. (2013). A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol 71:523–30.
  • Ramelyte E, Restivo G, Mannino M, et al. (2022). Advances in the drug management of basal cell carcinoma. Expert Opin Pharmacother 23:573–82.
  • Recouvreux MV, Commisso C. (2017). Macropinocytosis: a metabolic adaptation to nutrient stress in cancer. Front Endocrinol (Lausanne) 8:261.
  • Rosen MN, Goodwin RA, Vickers MM. (2021). BRCA mutated pancreatic cancer: A change is coming. World J Gastroenterol 27:1943–58.
  • Rozema DB, Lewis DL, Wakefield DH, et al. (2007). Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci U S A 104:12982–7.
  • Sakamoto JH, van de Ven AL, Godin B, et al. (2010). Enabling individualized therapy through nanotechnology. Pharmacol Res 62:57–89.
  • Schug ZT, Vande Voorde J, Gottlieb E. (2016). The metabolic fate of acetate in cancer. Nat Rev Cancer 16:708–17.
  • Shackelford DB, Abt E, Gerken L, et al. (2013). LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 23:143–58.
  • Shao X, Ding Z, Zhou W, et al. (2021). Intrinsic bioactivity of black phosphorus nanomaterials on mitotic centrosome destabilization through suppression of PLK1 kinase. Nat Nanotechnol 16:1150–60.
  • Sheikh MA, Althouse AD, Freese KE, et al. (2014). USA endometrial cancer projections to 2030: should we be concerned? Future Oncol 10:2561–8.
  • Sheppard S, Santosa EK, Lau CM, et al. (2021). Lactate dehydrogenase A-dependent aerobic glycolysis promotes natural killer cell anti-viral and anti-tumor function. Cell Rep 35:109210.
  • Shi J, Votruba AR, Farokhzad OC, et al. (2010). Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10:3223–30.
  • Shtam TA, Kovalev RA, Varfolomeeva EY, et al. (2013). Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal 11:1–10.
  • Siegel RL, Miller KD, Jemal A. (2020). Cancer statistics, 2020. CA A Cancer J Clin 70:7–30.
  • Sies H. (2015). Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–3.
  • Singh SK, Gordetsky JB, Bae S, et al. (2020). Selective targeting of the Hedgehog signaling pathway by PBM nanoparticles in docetaxel-resistant prostate cancer. Cells 9:1976.
  • Song Y, Barry WT, Seah DS, et al. (2020). Patterns of recurrence and metastasis in BRCA1/BRCA2-associated breast cancers. Cancer 126:271–80.
  • Spinelli JB, Haigis MC. (2018). The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20:745–54.
  • Strong AL, Ohlstein JF, Biagas BA, et al. (2015). Leptin produced by obese adipose stromal/stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers. Breast Cancer Res 17:1–16.
  • Sung H, et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin 71:209–49.
  • Suresh S. (2007). Biomechanics and biophysics of cancer cells. Acta Biomater 3:413–38.
  • Tang L, Mei Y, Shen Y, et al. (2021). Nanoparticle-mediated targeted drug delivery to remodel tumor microenvironment for cancer therapy. Int J Nanomedicine 16:5811–29.
  • Tang Z, Liu Y, He M, et al. (2019). Chemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew Chem Int Ed Engl 58:946–56.
  • Thomas D, Rathinavel AK, Radhakrishnan P. (2021). Altered glycosylation in cancer: A promising target for biomarkers and therapeutics. Biochim Biophys Acta Rev Cancer 1875:188464.
  • Thyagarajan A, Sahu RP. (2018). Potential contributions of antioxidants to cancer therapy: immunomodulation and radiosensitization. Integr Cancer Ther 17:210–6.
  • Tran H-V, Ngo NM, Medhi R, et al. (2022). Multifunctional iron oxide magnetic nanoparticles for biomedical applications: A review. Materials 15:503.
  • Valencia PM, et al. (2020). Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nano-Enabled Medical Applications 7:93–112.
  • Valenzuela C, Chen C, Sun M, et al. (2021). Strategies and applications of covalent organic frameworks as promising nanoplatforms in cancer therapy. J Mater Chem B 9:3450–83.
  • Vander Heiden MG, Cantley LC, Thompson CB. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–33.
  • Wang X-Q, Peng M, Li C-X, et al. (2018). Real-time imaging of free radicals for mitochondria-targeting hypoxic tumor therapy. Nano Lett 18:6804–11.
  • Wei Q-Y, Xu Y-M, Lau AT. (2020). Recent progress of nanocarrier-based therapy for solid malignancies. Cancers 12:2783.
  • Wei W, Zeng H, Zheng R, et al. (2020). Cancer registration in China and its role in cancer prevention and control. Lancet Oncol 21:e342–e349.
  • Wieman HL, Wofford JA, and, Rathmell JC. (2007). Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell 18:1437–46.
  • Wilson PM, Danenberg PV, Johnston PG, et al. (2014). Standing the test of time: targeting thymidylate biosynthesis in cancer therapy. Nat Rev Clin Oncol 11:282–98.
  • Wu D, Hu D, Chen H, et al. (2018). Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature 559:637–41.
  • Wu D, Li BL, Zhao Q, et al. (2020). Assembling defined DNA nanostructure with nitrogen-enriched carbon dots for theranostic cancer applications. Small 16:1906975.
  • Xia T, Kovochich M, Brant J, et al. (2006). Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–807.
  • Xiao W, Gao H. (2018). The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system. Int J Pharm 552:328–39.
  • Xu Y, Yu Z, Fu H, et al. (2022). Dual inhibitions on glucose/glutamine metabolisms for nontoxic pancreatic cancer therapy. ACS Appl Mater Interfaces 14:21836–47.
  • Yang X, Cheng Y, Zhou J, et al. (2022). Targeting cancer metabolism plasticity with JX06 nanoparticles via inhibiting PDK1 combined with metformin for endometrial cancer patients with diabetes. Adv Sci 9:2104472.
  • Yoo J, Park C, Yi G, et al. (2019). Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers 11:640.
  • Yoshino H, Nohata N, Miyamoto K, et al. (2017). PHGDH as a key enzyme for serine biosynthesis in HIF2α-targeting therapy for renal cell carcinoma PHGDH as a key enzyme in HIF2α targeting therapy for RCC. Cancer Res 77:6321–9.
  • Yu Z, Zhou P, Pan W, et al. (2018). A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nat Commun 9:1–9.
  • Zanotelli MR, Zhang J, Reinhart-King CA. (2021). Mechanoresponsive metabolism in cancer cell migration and metastasis. Cell Metab 33:1307–21.
  • Zhu H, Huang S, Ding M, et al. (2022). Sulfur defect-engineered biodegradable cobalt sulfide quantum dot-driven photothermal and chemodynamic anticancer therapy. ACS Appl Mater Interfaces 14:25183–96.
  • Zhu H, Li Z, Ye E, et al. (2021). Oxygenic enrichment in hybrid ruthenium sulfide nanoclusters for an optimized photothermal effect. ACS Appl Mater Interfaces 13:60351–61.
  • Zuo L, Prather ER, Stetskiv M, et al. (2019). Inflammaging and oxidative stress in human diseases: from molecular mechanisms to novel treatments. IJMS 20:4472.