2,526
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Aptamer-mediated hollow MnO2 for targeting the delivery of sorafenib

, , , , , , , , , & show all
Pages 28-39 | Received 27 Sep 2022, Accepted 15 Nov 2022, Published online: 01 Dec 2022

References

  • Chen F, Fang Y, Chen X, et al. (2021). Recent advances of sorafenib nanoformulations for cancer therapy: smart nanosystem and combination therapy. Asian J Pharm Sci 16:318–36.
  • Chen J, Wang X, Zhang Y, et al. (2021). A redox-triggered C–centered free radicals nanogenerator for self-enhanced magnetic resonance imaging and chemodynamic therapy. Biomaterials 266:120457.
  • Chen Q, Feng L, Liu J, et al. (2018). Intelligent albumin-MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv Mater 30:1707414.
  • Cheng M, Yu Y, Huang W, et al. (2020). Monodisperse hollow MnO2 with biodegradability for efficient targeted drug delivery. ACS Biomater Sci Eng 6:4985–92.
  • Daraee H, Etemadi A, Kouhi M, et al. (2016). Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol 44:381–91.
  • Deng X, Song Q, Zhang Y, et al. (2022). Tumour microenvironment-responsive nanoplatform based on biodegradable liposome-coated hollow MnO2 for synergistically enhanced chemotherapy and photodynamic therapy. J Drug Target 30:334–47.
  • Dong L, Zhou H, Zhao M, et al. (2018). Phosphorothioate-modified AP613-1 specifically targets GPC3 when used for hepatocellular carcinoma cell imaging. Mol Ther Nucleic Acids 13:376–86.
  • Dong X, Mumper RJ. (2010). Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine (Lond) 5:597–615.
  • He Q, Shi J. (2011). Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J Mater Chem 21:5845–55.
  • Ho M, Kim H. (2011). Glypican-3: a new target for cancer immunotherapy. Eur J Cancer 47:333–8.
  • Huang X, Li L, Liu T, et al. (2011). The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 5:5390–9.
  • Kroon J, Metselaar JM, Storm G, et al. (2014). Liposomal nanomedicines in the treatment of prostate cancer. Cancer Treat Rev 40:578–84.
  • Kudo M, Finn RS, Qin S, et al. (2018). Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391:1163–73.
  • Li M, Su Y, Zhang F, et al. (2018). A dual-targeting reconstituted high density lipoprotein leveraging the synergy of sorafenib and antimiRNA21 for enhanced hepatocellular carcinoma therapy. Acta Biomater 75:413–26.
  • Lin TT, Gao DY, Liu YC, et al. (2016). Development and characterization of sorafenib-loaded PLGA nanoparticles for the systemic treatment of liver fibrosis. J Control Release 221:62–70.
  • Liu J, Boonkaew B, Arora J, et al. (2015). Comparison of sorafenib-loaded poly (lactic/glycolic) acid and DPPC liposome nanoparticles in the in vitro treatment of renal cell carcinoma. J Pharm Sci 104:1187–96.
  • Liu X, Zhu X, Qi X, et al. (2021). Co-administration of iRGD with sorafenib-loaded iron-based metal-organic framework as a targeted ferroptosis agent for liver cancer therapy. Int J Nanomedicine 16:1037–50.
  • Mahmoud K, Swidan S, El-Nabarawi M, et al. (2022). Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances. J Nanobiotechnol 20:109.
  • Mancuso A, Airoldi A, Vigano R, et al. (2011). Fatal gastric bleeding during sorafenib treatment for hepatocellular carcinoma recurrence after liver transplantation. Dig Liver Dis 43:754.
  • Mangal S, Gao W, Li T, et al. (2017). Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin 38:782–97.
  • Ning Z, Yang L, Yan X, et al. (2022). Effect and mechanism of the lenvatinib@H-MnO2-FA drug delivery system in targeting intrahepatic cholangiocarcinoma. Curr Pharm Des 28:743–50.
  • Pellosi DS, Moret F, Fraix A, et al. (2016). Pluronic P123/F127 mixed micelles delivering sorafenib and its combination with verteporfin in cancer cells. Int J Nanomed 11:4479–94.
  • Semela D, Dufour JF. (2004). Angiogenesis and hepatocellular carcinoma. J Hepatol 41:864–80.
  • Stöber W, Fink A, Bohn E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–9.
  • Su Y, Wang K, Li Y, et al. (2018). Sorafenib-loaded polymeric micelles as passive targeting therapeutic agents for hepatocellular carcinoma therapy. Nanomedicine (Lond) 13:1009–23.
  • Sung H, Ferlay J, Siegel RL, et al. (2021). Global cancer statistics 2020: global estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–49.
  • Tang F, Li L, Chen D. (2012). Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24:1504–34.
  • Tang W, Chen Z, Zhang W, et al. (2020). The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther 5:87.
  • Wang H, Wang H, Yang W, et al. (2018). Improved oral bioavailability and liver targeting of sorafenib solid lipid nanoparticles in rats. AAPS PharmSciTech 19:761–8.
  • Wathoni N, Nguyen AN, Rusdin A, et al. (2020). Enteric-coated strategies in colorectal cancer nanoparticle drug delivery system. Drug Des Devel Ther 14:4387–405.
  • Xiao Y, Liu Y, Yang S, et al. (2016). Sorafenib and gadolinium co–loaded liposomes for drug delivery and MRI-guided HCC treatment. Colloids Surf B Biointerfaces 141:83–92.
  • Xu W, Qing X, Liu S, et al. (2022). Hollow mesoporous manganese oxides: application in cancer diagnosis and therapy. Small 18:e2106511.
  • Xu X, Duan J, Liu Y, et al. (2021). Multi-stimuli responsive hollow MnO2-based drug delivery system for magnetic resonance imaging and combined chemo-chemodynamic cancer therapy. Acta Biomater 126:445–62.
  • Yang G, Xu L, Chao Y, et al. (2017). Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat Commun 8:902.
  • Yang S, Zhang B, Gong X, et al. (2016). In vivo biodistribution, biocompatibility, and efficacy of sorafenib-loaded lipid-based nanosuspensions evaluated experimentally in cancer. Int J Nanomed 11:2329–43.
  • Zhang BC, Luo BY, Zou JJ, et al. (2020). Co-delivery of Sorafenib and CRISPR/Cas9 based on targeted core-shell hollow mesoporous organosilica nanoparticles for synergistic HCC therapy. ACS Appl Mater Interfaces 12:57362–72.
  • Zhang H, Zhang FM, Yan SJ. (2012). Preparation, in vitro release, and pharmacokinetics in rabbits of lyophilized injection of sorafenib solid lipid nanoparticles. Int J Nanomed 7:2901–10.
  • Zhao M, Liu Z, Dong L, et al. (2018). A GPC3-specific aptamer-mediated magnetic resonance probe for hepatocellular carcinoma. Int J Nanomed 13:4433–43.
  • Zheng L, Li C, Huang X, et al. (2019). Thermosensitive hydrogels for sustained-release of sorafenib and selenium nanoparticles for localized synergistic chemoradiotherapy. Biomaterials 216:119220.
  • Zhou Z, Zheng X, Liu M, et al. (2022). Engineering amorphous/crystalline structure of manganese oxide for superior oxygen catalytic performance in rechargeable zinc-air batteries. ChemSusChem 15:e202200612.
  • Zhu L, Zhao J, Guo Z, et al. (2021). Applications of aptamer-bound nanomaterials in cancer therapy. Biosensors (Basel) 11:344.
  • Zhu W, Dong Z, Fu T, et al. (2016). Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy. Adv Funct Mater 26:5490–8.