2,149
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Risedronate-loaded aerogel scaffolds for bone regeneration

, ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Pages 51-63 | Received 26 Oct 2022, Accepted 21 Nov 2022, Published online: 06 Dec 2022

References

  • Abdel-Salam FS, Elkheshen SA, Mahmoud AA, et al. (2020). In-situ forming chitosan implant-loaded with raloxifene hydrochloride and bioactive glass nanoparticles for treatment of bone injuries: formulation and biological evaluation in animal model. Int J Pharm 580:119213.
  • Abouzeid RE, Khiari R, Beneventi D, Dufresne A. (2018). Biomimetic mineralization of three-dimensional printed alginate/TEMPO-oxidized cellulose nanofibril scaffolds for bone tissue engineering. Biomacromolecules 19:4442–52.
  • Abouzeid RE, Khiari R, El-Wakil N, Dufresne A. (2019). Current state and new trends in the use of cellulose nanomaterials for wastewater treatment. Biomacromolecules 20:573–97.
  • Ammar H, Ghorab M, El-Nahhas S, Kamel R. (2009). Polymeric matrix system for prolonged delivery of tramadol hydrochloride, part I: physicochemical evaluation. Aaps Pharmscitech 10:7–20.
  • Bozova N, Petrov PD. (2021). Highly elastic super-macroporous cryogels fabricated by thermally induced crosslinking of 2-hydroxyethylcellulose with citric acid in solid state. Molecules 26:6370.
  • Cai J, Zhang L, Liu S, et al. (2008). Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–51.
  • Castro SPM, Paulín EGL. (2015). Is chitosan a new panacea? Areas of application. In: The complex world of polysaccharides. Vol. 1, 3–46.
  • Cheng S-Y, Wang B-J, Weng Y-M. (2015). Antioxidant and antimicrobial edible zein/chitosan composite films fabricated by incorporation of phenolic compounds and dicarboxylic acids. LWT - Food Sci Technol 63:115–21.
  • Cheng X, Zhu Z, Liu Y, et al. (2020). Zeolitic imidazolate framework-8 encapsulating risedronate synergistically enhances osteogenic and antiresorptive properties for bone regeneration. ACS Biomater Sci Eng 6:2186–97.
  • Coma V, Sebti I, Pardon P, et al. (2003). Film properties from crosslinking of cellulosic derivatives with a polyfunctional carboxylic acid. Carbohydr Polym 51:265–71.
  • Crini G, Badot P-M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447.
  • Croisier F, Jérôme C. (2013). Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–92.
  • Danielson R, Porosity SP. (1986). Methods of soil analysis: part 1 physical and mineralogical methods. Am Soc Agron 5:443–61.
  • Deguchi S, Tsujii K, Horikoshi K. (2008). Crystalline-to-amorphous transformation of cellulose in hot and compressed water and its implications for hydrothermal conversion. Green Chem 10:191–6.
  • Demitri C, Del Sole R, Scalera F, et al. (2008). Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110:2453–60.
  • Elkasabgy NA, Abdel-Salam FS, Mahmoud AA, Basalious EB, et al. (2019). Long lasting in-situ forming implant loaded with raloxifene HCl: an injectable delivery system for treatment of bone injuries. Int J Pharm 571:118703.
  • Elkasabgy NA, Mahmoud AA, Shamma RN. (2018). Determination of cytocompatibility and osteogenesis properties of in situ forming collagen-based scaffolds loaded with bone synthesizing drug for bone tissue engineering. Int J Polym Mater Polym Biomater 67:494–500.
  • Elkasabgy NA, Mahmoud AA. (2019). Fabrication strategies of scaffolds for delivering active ingredients for tissue engineering. AAPS PharmSciTech 20:1–18.
  • Elnaggar YS, Omran S, Hazzah HA, Abdallah OY. (2019). Anionic versus cationic bilosomes as oral nanocarriers for enhanced delivery of the hydrophilic drug risedronate. Int J Pharm 564:410–25.
  • Elsabee MZ, Abdou ES. (2013). Chitosan based edible films and coatings: a review. Mater Sci Eng C Mater Biol Appl 33:1819–41.
  • El-Wakil N, Taha M, Abouzeid R, dufresne A. (2022). Dissolution and regeneration of cellulose from N-methylmorpholine N-oxide and fabrication of nanofibrillated cellulose. Biomass Conv Bioref: 1–12.
  • El-Wakil NA, Hassan ML. (2008). Structural changes of regenerated cellulose dissolved in FeTNa, NaOH/thiourea, and NMMO systems. J Appl Polym Sci 109:2862–71.
  • Franklin D, Guhanathan S. (2014). Synthesis and characterization of citric acid-based pH-sensitive biopolymeric hydrogels. Polym Bull 71:93–110.
  • Gautam S, Dinda AK, Mishra NC. (2013). Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater Sci Eng C Mater Biol Appl 33:1228–35.
  • Hansen MB, Nielsen SE, Berg K. (1989). Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119:203–10.
  • Hassan M, Tucker N, Le Guen MJ. (2020). Thermal, mechanical and viscoelastic properties of citric acid-crosslinked starch/cellulose composite foams. Carbohydr Polym 230:115675.
  • He Q, Ao Q, Gong Y, Zhang X. (2011). Preparation of chitosan films using different neutralizing solutions to improve endothelial cell compatibility. J Mater Sci Mater Med 22:2791–802.
  • Ioelovich M. (2013). Nanoparticles of amorphous cellulose and their properties. Am J Nanosci Nanotechnol 1:41–5.
  • Jafari M, Paknejad Z, Rad MR, et al. (2017). Polymeric scaffolds in tissue engineering: a literature review. J Biomed Mater Res B Appl Biomater 105:431–59.
  • Joshi VS, Lei NY, Walthers CM, et al. (2013). Macroporosity enhances vascularization of electrospun scaffolds. J Surg Res 183:18–26.
  • Kamel R, Abbas H. (2013). Self-assembled carbohydrate hydrogels for prolonged pain management. Pharm Dev Technol 18:990–1004.
  • Kamel R, Afifi SM, Abdou AM, et al. (2022a). Nanolipogel loaded with tea tree oil for the management of burn: GC-MS analysis, in vitro and in vivo evaluation. Molecules 27:6143.
  • Kamel R, El-Wakil NA, Abdelkhalek AA, Elkasabgy NA. (2020). Nanofibrillated cellulose/cyclodextrin based 3D scaffolds loaded with raloxifene hydrochloride for bone regeneration. Int J Biol Macromol 156:704–16.
  • Kamel R, Mabrouk M, El-Sayed SA, et al. (2022b). Nanofibrillated cellulose/glucosamine 3D aerogel implants loaded with rosuvastatin and bioactive ceramic for dental socket preservation. Int J Pharm 616:121549.
  • Kamel R. (2013). Study of the influence of selected variables on the preparation of prolonged release bioadhesive vaginal carbohydrate microspheres using experimental design. J Drug Delivery Sci Technol 23:247–54.
  • Khajuria DK, Zahra SF, Razdan R. (2018). Effect of locally administered novel biodegradable chitosan based risedronate/zinc-hydroxyapatite intra-pocket dental film on alveolar bone density in rat model of periodontitis. J Biomater Sci Polym Ed 29:74–91.
  • Khalil HA, Yahya EB, Jummaat F, et al. (2023). Biopolymers based Aerogels: a review on revolutionary solutions for smart therapeutics delivery. Prog Mater Sci 131:101014.
  • Khan K, CT R. (1972). Effect of compaction pressure on the dissolution efficiency of some direct compression systems.
  • Komori T. (2008). Regulation of bone development and maintenance by Runx2. Front Biosci 13:898–903.
  • Leite M, Quinta-Costa M, Leite PS, Guimarães JE. (1999). Critical evaluation of techniques to detect and measure cell death–study in a model of UV radiation of the leukaemic cell line HL60. Anal Cell Pathol 19:139–51.
  • Li R, Wang S, Lu A, Zhang L. (2015). Dissolution of cellulose from different sources in an NaOH/urea aqueous system at low temperature. Cellulose 22:339–49.
  • Liebner F, Potthast A, Rosenau T, et al. (2008). Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung 62:129–35.
  • Liu Z, Wang H, Li Z, et al. (2011). Characterization of the regenerated cellulose films in ionic liquids and rheological properties of the solutions. Mater Chem Phys 128:220–7.
  • Lupascu FG, Dash M, Samal SK, et al. (2015). Development, optimization and biological evaluation of chitosan scaffold formulations of new xanthine derivatives for treatment of type-2 diabetes mellitus. Eur J Pharm Sci 77:122–34.
  • Ma Y, Xin L, Tan H, et al. (2017). Chitosan membrane dressings toughened by glycerol to load antibacterial drugs for wound healing. Mater Sci Eng C Mater Biol Appl 81:522–31.
  • Maged A, Abdelkhalek AA, Mahmoud AA, Salah S, et al. (2019). Mesenchymal stem cells associated with chitosan scaffolds loaded with rosuvastatin to improve wound healing. Eur J Pharm Sci 127:185–98.
  • Mali K, Dhawale S, Dias R, et al. (2018). Citric acid crosslinked carboxymethyl cellulose-based composite hydrogel films for drug delivery. Indian J Pharm Sci 80:657–67.
  • Marković D, Ćetenović B, Vuković A, et al. (2016). Nanosynthesized calcium-silicate-based biomaterials in endodontic treatment of young permanent teeth. In: Grumezescu A, ed. Nanobiomaterials in dentistry. Amsterdam: Elsevier, 269–307.
  • Mitchell DY, Barr WH, Eusebio RA, et al. (2001). Risedronate pharmacokinetics and intra- and inter-subject variability upon single-dose intravenous and oral administration. Pharm Res 18:166–70.
  • Morrison WA. (2009). Progress in tissue engineering of soft tissue and organs. Surgery 145:127–30.
  • Mostafa AA, Mahmoud AA, Hamid MAA, et al. (2021). An in vitro/in vivo release test of risedronate drug loaded nano-bioactive glass composite scaffolds. Int J Pharm 607:120989.
  • Nair LS, Laurencin CT. (2006). Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv Biochem Eng Biotechnol 102:47–90.
  • Ni J, Na H, She Z, et al. (2014). Responsive behavior of regenerated cellulose in hydrolysis under microwave radiation. Bioresour Technol 167:69–73.
  • Nishiyama Y, Langan P, Chanzy H. (2002). Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–82.
  • Nitta S, Kaketani S, Iwamoto H. (2015). Development of chitosan-nanofiber-based hydrogels exhibiting high mechanical strength and pH-responsive controlled release. Eur Polym J 67:50–6.
  • Noel SP, Courtney H, Bumgardner JD, Haggard WO. (2008). Chitosan films: a potential local drug delivery system for antibiotics. Clin Orthop Relat Res 466:1377–82.
  • O’Neil M. The Merk Index. An encyclopedia of chemicals, drugs and biologicals. 13th ed. White House Station (NJ): RSC Publishing; 2001, 1478 p.
  • Patiño-Masó J, Serra-Parareda F, Tarrés Q, et al. (2019). TEMPO-oxidized cellulose nanofibers: a potential bio-based superabsorbent for diaper production. Nanomaterials 9:1271.
  • Podczeck F. (1993). Comparison of in vitro dissolution profiles by calculating mean dissolution time (MDT) or mean residence time (MRT). Int J Pharm 97:93–100.
  • Raucci M, Alvarez-Perez M, Demitri C, et al. (2015). Effect of citric acid crosslinking cellulose-based hydrogels on osteogenic differentiation. J Biomed Mater Res A 103:2045–56.
  • Redman-Furey N, Dicks M, Bigalow-Kern A, et al. (2005). Structural and analytical characterization of three hydrates and an anhydrate form of risedronate. J Pharm Sci 94:893–911.
  • Reys LL, Silva SS, Pirraco RP, et al. (2017). Influence of freezing temperature and deacetylation degree on the performance of freeze-dried chitosan scaffolds towards cartilage tissue engineering. Eur Polym J 95:232–40.
  • Rizal S, Yahya EB, Abdul Khalil H, et al. (2021). Preparation and characterization of nanocellulose/chitosan aerogel scaffolds using chemical-free approach. Gels 7:246.
  • Romano KP, Newman AG, Zahran RW, Millard JT. (2007). DNA interstrand cross-linking by epichlorohydrin. Chem Res Toxicol 20:832–8.
  • Sadik T, Pillon C, Carrot C, Ruiz J-AR. (2018). Dsc studies on the decomposition of chemical blowing agents based on citric acid and sodium bicarbonate. Thermochim Acta 659:74–81.
  • Samayam IP, Hanson BL, Langan P, Schall CA. (2011). Ionic-liquid induced changes in cellulose structure associated with enhanced biomass hydrolysis. Biomacromolecules 12:3091–8.
  • Savjani KT, Gajjar AK, Savjani JK. (2012). Drug solubility: importance and enhancement techniques. ISRN Pharm 2012:195727.
  • Sechriest VF, Miao YJ, Niyibizi C, et al. (2000). GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis. J Biomed Mater Res 49:534–41.
  • Segal L, Creely JJ, Martin A, Jr, Conrad C. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–94.
  • Shamma RN, Elkasabgy NA, Mahmoud AA, et al. (2017). Design of novel injectable in-situ forming scaffolds for non-surgical treatment of periapical lesions: in-vitro and in-vivo evaluation. Int J Pharm 521:306–17.
  • Silva TCF, Habibi Y, Colodette JL, et al. (2012). A fundamental investigation of the microarchitecture and mechanical properties of tempo-oxidized nanofibrillated cellulose (NFC)-based aerogels. Cellulose 19:1945–56.
  • The United States Pharmacopoeia. (2016). The United States pharmacopoeial covention. Rockville (MD).
  • Udoetok IA, Wilson LD, Headley JV. (2018a). “pillaring effects” in cross-linked cellulose biopolymers: a study of structure and properties. Int J Polym Sci 2018:1–13.
  • Udoetok IA, Wilson LD, Headley JV. (2018b). Ultra-sonication assisted cross-linking of cellulose polymers. Ultrason Sonochem 42:567–76.
  • Ueno H, Nakamura F, Murakami M, et al. (2001). Evaluation effects of chitosan for the extracellular matrix production by fibroblasts and the growth factors production by macrophages. Biomaterials 22:2125–30.
  • Ulery BD, Nair LS, Laurencin CT. (2011). Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 49:832–64.
  • Uliniuc A, Hamaide T, Popa M, Băcăiță S. (2013). Modified starch-based hydrogels cross-linked with citric acid and their use as drug delivery systems for levofloxacin. Soft Mater 11:483–93.
  • Vinatier C, Mrugala D, Jorgensen C, et al. (2009). Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol 27:307–14.
  • Weinstein RS, Roberson PK, Manolagas SC. (2009). Giant osteoclast formation and long-term oral bisphosphonate therapy. N Engl J Med 360:53–62.
  • Xie J, Ihara M, Jung Y, et al. (2006). Mechano-active scaffold design based on microporous poly (L-lactide-co-ε-caprolactone) for articular cartilage tissue engineering: dependence of porosity on compression force-applied mechanical behaviors. Tissue Eng 12:449–58.
  • Yahya EB, Jummaat F, Amirul A, et al. (2020). A review on revolutionary natural biopolymer-based aerogels for antibacterial delivery. Antibiotics 9:648.
  • Yang Y, Zhang Y, Dawelbeit A, et al. (2017). Structure and properties of regenerated cellulose fibers from aqueous NaOH/thiourea/urea solution. Cellulose 24:4123–37.
  • Yeng LC, Wahit MU, Othman N. (2015). Thermal and flexural properties of regenerated cellulose (RC)/poly (3-hydroxybutyrate)(PHB) biocomposites. J Teknologi 75.
  • Ying T-H, Chen C-W, Hsiao Y-P, et al. (2013). Citric acid induces cell-cycle arrest and apoptosis of human immortalized keratinocyte cell line (HaCaT) via caspase-and mitochondrial-dependent signaling pathways. Anticancer Res 33:4411–20.
  • Zawadzki J, Kaczmarek H. (2010). Thermal treatment of chitosan in various conditions. Carbohydr Polym 80:394–400.