2,180
Views
4
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

The nanoprodrug of polytemozolomide combines with MGMT siRNA to enhance the effect of temozolomide in glioma

, , , , , , , , & show all
Pages 1-13 | Received 29 Sep 2022, Accepted 21 Nov 2022, Published online: 29 Dec 2022

References

  • Adair JE, Johnston SK, Mrugala MM, et al. (2014). Gene therapy enhances chemotherapy tolerance and efficacy in glioblastoma patients. J Clin Invest 124:4082–92.
  • Basuki JS, Duong HT, Macmillan A, et al. (2013). Using fluorescence lifetime imaging microscopy to monitor theranostic nanoparticle uptake and intracellular doxorubicin release. ACS Nano 7:10175–89.
  • Chen X, Zhang M, Gan H, et al. (2018). A novel enhancer regulates MGMT expression and promotes temozolomide resistance in glioblastoma. Nat Commun 9:2949.
  • Danhier F, Messaoudi K, Lemaire L, et al. (2015). Combined anti-galectin-1 and anti-EGFR siRNA-loaded chitosan-lipid nanocapsules decrease temozolomide resistance in glioblastoma: in vivo evaluation. Int J Pharm 481:154–61.
  • Du K, Xia Q, Heng H, Feng F. (2020). Temozolomide-doxorubicin conjugate as a double intercalating agent and delivery by apoferritin for glioblastoma chemotherapy. ACS Appl Mater Interfaces 12:34599–609.
  • Du Rietz H, Hedlund H, Wilhelmson S, et al. (2020). Imaging small molecule-induced endosomal escape of siRNA. Nat Commun 11:1809.
  • Hanafy AS, Dietrich D, Fricker G, Lamprecht A. (2021). Blood-brain barrier models: rationale for selection. Adv Drug Deliv Rev 176:113859.
  • Hua D, Tang L, Wang W, et al. (2021). Improved antiglioblastoma activity and BBB permeability by conjugation of paclitaxel to a cell-penetrative MMP-2-cleavable peptide. Adv Sci (Weinh) 8:2001960.
  • Hua L, Wang Z, Zhao L, et al. (2018). Hypoxia-responsive lipid-poly-(hypoxic radiosensitized polyprodrug) nanoparticles for glioma chemo- and radiotherapy. Theranostics 8:5088–105.
  • Islam Y, Leach AG, Smith J, et al. (2021). Physiological and pathological factors affecting drug delivery to the brain by nanoparticles. Adv Sci (Weinh) 8:e2002085.
  • Jiang T, Qiao Y, Ruan W, et al. (2021). Cation-free siRNA micelles as effective drug delivery platform and potent RNAi nanomedicines for glioblastoma therapy. Adv Mater 33:e2104779.
  • Johnson KC, Anderson KJ, Courtois ET, et al. (2021). Single-cell multimodal glioma analyses identify epigenetic regulators of cellular plasticity and environmental stress response. Nat Genet 53:1456–68.
  • Joshi N, Yan J, Levy S, et al. (2018). Towards an arthritis flare-responsive drug delivery system. Nat Commun 9:1275.
  • Joshi SK, Qian K, Bisson WH, et al. (2020). Discovery and characterization of targetable NTRK point mutations in hematologic neoplasms. Blood 135:2159–70.
  • Kang S, Duan W, Zhang S, et al. (2020). Muscone/RI7217 co-modified upward messenger DTX liposomes enhanced permeability of blood-brain barrier and targeting glioma. Theranostics 10:4308–22.
  • Karlsson J, Luly KM, Tzeng SY, Green JJ. (2021). Nanoparticle designs for delivery of nucleic acid therapeutics as brain cancer therapies. Adv Drug Deliv Rev 179:113999.
  • Kleber S, Sancho-Martinez I, Wiestler B, et al. (2008). Yes and PI3K bind CD95 to signal invasion of glioblastoma. Cancer Cell 13:235–48.
  • Liu J, Chang J, Jiang Y, et al. (2019). Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles. Adv Mater 31:e1902575.
  • Liu Y, Zheng M, Jiao M, et al. (2021). Polymeric nanoparticle mediated inhibition of miR-21 with enhanced miR-124 expression for combinatorial glioblastoma therapy. Biomaterials 276:121036.
  • Meng X, Zhao Y, Han B, et al. (2020). Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways. Nat Commun 11:594.
  • Nicholson JG, Fine HA. (2021). Diffuse glioma heterogeneity and its therapeutic implications. Cancer Discov 11:575–90.
  • Otvos B, Alban TJ, Grabowski MM, et al. (2021). Preclinical modeling of surgery and steroid therapy for glioblastoma reveals changes in immunophenotype that are associated with tumor growth and outcome. Clin Cancer Res 27:2038–49.
  • Qiao C, Yang J, Shen Q, et al. (2018). Traceable nanoparticles with dual targeting and ROS response for RNAi-based immunochemotherapy of intracranial glioblastoma treatment. Adv Mater 30:e1705054.
  • Setten RL, Rossi JJ, Han SP. (2019). The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov 18:421–46.
  • Sita TL, Kouri FM, Hurley LA, et al. (2017). Dual bioluminescence and near-infrared fluorescence monitoring to evaluate spherical nucleic acid nanoconjugate activity in vivo. Proc Natl Acad Sci U S A 114:4129–34.
  • Tan AC, Ashley DM, Lopez GY, et al. (2020). Management of glioblastoma: state of the art and future directions. CA Cancer J Clin 70:299–312.
  • Tan J, Duan X, Zhang F, et al. (2020). Theranostic nanomedicine for synergistic chemodynamic therapy and chemotherapy of orthotopic glioma. Adv Sci (Weinh) 7:2003036.
  • Tian M, Xing R, Guan J, et al. (2021). A nanoantidote alleviates glioblastoma chemotoxicity without efficacy compromise. Nano Lett 21:5158–66.
  • Wang K, Kievit FM, Chiarelli PA, et al. (2021). siRNA nanoparticle suppresses drug-resistant gene and prolongs survival in an orthotopic glioblastoma xenograft mouse model. Adv Funct Mater 31(6):2007166.
  • Wang M, Lv CY, Li SA, et al. (2021). Near infrared light fluorescence imaging-guided biomimetic nanoparticles of extracellular vesicles deliver indocyanine green and paclitaxel for hyperthermia combined with chemotherapy against glioma. J Nanobiotechnology 19:210.
  • Wang Y, Jiang Y, Wei D, et al. (2021). Nanoparticle-mediated convection-enhanced delivery of a DNA intercalator to gliomas circumvents temozolomide resistance. Nat Biomed Eng 5:1048–58.
  • Wang Z, Zhang H, Xu S, et al. (2021). The adaptive transition of glioblastoma stem cells and its implications on treatments. Signal Transduct Target Ther 6:124.
  • Ward LD, Tu HC, Quenneville CB, Geisinger-Regeneron DiscovEHR Collaboration, et al. (2021). GWAS of serum ALT and AST reveals an association of SLC30A10 Thr95Ile with hypermanganesemia symptoms. Nat Commun 12:4571.
  • Xia Y, Tang G, Chen Y, et al. (2021). Tumor-targeted delivery of siRNA to silence Sox2 gene expression enhances therapeutic response in hepatocellular carcinoma. Bioact Mater 6:1330–40.
  • Xu H, Han Y, Zhao G, et al. (2020). Hypoxia-responsive lipid-polymer nanoparticle-combined imaging-guided surgery and multitherapy strategies for glioma. ACS Appl Mater Interfaces 12:52319–28.
  • Xu J, Liu Y, Liu S, et al. (2022). Metformin bicarbonate-mediated efficient RNAi for precise targeting of TP53 deficiency in colon and rectal cancers. Nano Today 43:101406.
  • Yang K, Wu Z, Zhang H, et al. (2022). Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer 21:39.
  • Yi GZ, Huang G, Guo M, et al. (2019). Acquired temozolomide resistance in MGMT-deficient glioblastoma cells is associated with regulation of DNA repair by DHC2. Brain 142:2352–66.
  • Zhang XN, Yang KD, Chen C, et al. (2021). Pericytes augment glioblastoma cell resistance to temozolomide through CCL5-CCR5 paracrine signaling. Cell Res 31:1072–87.
  • Zoulikha M, Xiao Q, Boafo GF, et al. (2022). Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome. Acta Pharm Sin B 12:600–20.