5,848
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Recent advances in drug delivery systems for targeting brain tumors

, , , , , & show all
Pages 1-18 | Received 29 Aug 2022, Accepted 28 Nov 2022, Published online: 03 Jan 2023

References

  • Khan M, Sherwani S, Khan S, et al. (2021). Insights into multifunctional nanoparticle-based drug delivery systems for glioblastoma treatment. Molecules 26:2262.
  • Alcantara Llaguno S, Parada LF. (2021). Cancer stem cells in gliomas: evolving concepts and therapeutic implications. Curr Opin Neurol 34:868–74.
  • Alexander JJ. (2018). Blood-brain barrier (BBB) and the complement landscape. Mol Immunol 102:26–31.
  • Aparicio-Blanco J, Sanz-Arriazu L, Lorenzoni R, et al. (2020). Glioblastoma chemotherapeutic agents used in the clinical setting and in clinical trials: nanomedicine approaches to improve their efficacy. Int J Pharm 581:119283.
  • Ashby LS, Smith KA, Stea B. (2016). Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: a systematic literature review. World J Surg Oncol 14:225.
  • Azarmi M, Maleki H, Nikkam N, et al. (2020). Transcellular brain drug delivery: a review on recent advancements. Int J Pharm 586:119582.
  • Bhargav AG, Mondal SK, Garcia CA, et al. (2020). Nanomedicine revisited: next generation therapies for brain cancer. Adv Therap 3:2000118.
  • Caro C, Avasthi A, Paez-Munoz JM, et al. (2021). Passive targeting of high-grade gliomas via the EPR effect: a closed path for metallic nanoparticles? Biomater Sci 9:7984–95.
  • Charabati M, Rabanel J, Ramassamy C, et al. (2020). Overcoming the brain barriers: from immune cells to nanoparticles. Trends Pharmacol Sci 41:42–54.
  • Chelliah SS, Paul EAL, Kamarudin MNA, et al. (2021). Challenges and perspectives of standard therapy and drug development in high-grade gliomas. Molecules 26:1169.
  • Chen B, Dai W, He B, et al. (2017). Current multistage drug delivery systems based on the tumor microenvironment. Theranostics 7:538–58.
  • Chen WH, Luo GF, Zhang XZ. (2019). Recent advances in subcellular targeted cancer therapy based on functional materials. Adv Mater 31:1802725.
  • Chen Y, Liu LH. (2012). Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev 64:640–65.
  • Cho H, Cho Y, Shim M, et al. (2020). Mitochondria-targeted drug delivery in cancers. Biochim Biophys Acta Mol Basis Dis 1866:165808.
  • Conniot J, Talebian S, Simoes S, et al. (2021). Revisiting gene delivery to the brain: silencing and editing. Biomater Sci 9:1065–87.
  • Coutinho MF, Prata MJ, Alves S. (2012). Mannose-6-phosphate pathway: a review on its role in lysosomal function and dysfunction. Mol Genet Metab 105:542–50.
  • Crucianelli E, Bruni P, Frontini A, et al. (2014). Liposomes containing mannose-6-phosphate-cholesteryl conjugates for lysosome-specific delivery. RSC Adv 4:58204–7.
  • D'Agostino PM, Gottfried-Blackmore A, Anandasabapathy N, et al. (2012). Brain dendritic cells: ciology and pathology. Acta Neuropathol 124:599–614.
  • Desbaillets N, Hottinger AF. (2021). Immunotherapy in glioblastoma: a clinical perspective. Cancers 13:3721.
  • Dubois LG, Campanati L, Righy C, et al. (2014). Gliomas and the vascular fragility of the blood brain barrier. Front Cell Nurosci 8:418.
  • Emlet DR, Gupta P, Holgado-Madruga M, et al. (2014). Targeting a glioblastoma cancer stem-cell population defined by EGF receptor variant III. Cancer Res 74:1238–49.
  • Fu QY, Zhao Y, Yang ZZ, et al. (2019). Liposomes actively recognizing the glucose transporter GLUT1 and integrin alphav beta3 for dual-targeting of glioma. Arch Pharm Chem Life Sci 352:1800219.
  • Ganz JC. (2022). Low grade gliomas. Prog Brain Res 268:271–7.
  • Gao HL, Yang Z, Cao SJ, et al. (2014). Tumor cells and neovasculature dual targeting delivery for glioblastoma treatment. Biomaterials 35:2374–82.
  • Golombek SK, May JN, Theek B, et al. (2018). Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug Deliver Rev 130:17–38.
  • Grabrucker AM, Ruozi B, Belletti D, et al. (2016). Nanoparticle transport across the blood brain barrier. Tissue Barriers 4:e1153568.
  • Gu W, Meng F, Haag R, et al. (2021). Actively targeted nanomedicines for precision cancer therapy: concept, construction, challenges and clinical translation. J Control Release 329:676–95.
  • Haddad S, Abanades Lazaro I, et al. (2020). Design of a functionalized metal-organic framework system for enhanced targeted delivery to mitochondria. J Am Chem Soc 142:6661–74.
  • He C, Ding H, Chen J, et al. (2021). Immunogenic cell death induced by chemoradiotherapy of novel pH-sensitive cargo-loaded polymersomes in glioblastoma. Int J Nanomed 16:7123–35.
  • Helmlinger G, Sckell A, Dellian M, et al. (2002). Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clin Cancer Res 8:1284–91.
  • Hersh DS, Wadajkar AS, Roberts NB, et al. (2016). Evolving drug delivery strategies to overcome the blood brain barrier. Curr Pharm Des 22:1177–93.
  • Herve F, Ghinea N, Scherrmann JM. (2008). CNS delivery via adsorptive transcytosis. Aaps J 10:455–72.
  • Hua D, Tang L, Wang W, et al. (2021). Improved antiglioblastoma activity and BBB permeability by conjugation of paclitaxel to a cell-penetrative MMP-2-cleavable peptide. Adv Sci (Weinh) 8:2001960.
  • Hua L, Wang Z, Zhao L, et al. (2018). Hypoxia-responsive lipid-poly-(hypoxic radiosensitized polyprodrug) nanoparticles for glioma chemo- and radiotherapy. Theranostics 8:5088–105.
  • Huang M, Pu Y, Peng Y, et al. (2020). Biotin and glucose dual-targeting, ligand-modified liposomes promote breast tumor-specific drug delivery. Bioorg Med Chem Lett 30:127151.
  • Huang X, Wu J, He M, et al. (2019). Combined cancer chemo-photodynamic and photothermal therapy based on ICG/PDA/TPZ-loaded nanoparticles. Mol Pharm 16:2172–83.
  • Ishihara H, Kubota H, Lindberg RLP, et al. (2008). Endothelial cell barrier impairment induced by glioblastomas and transforming growth factor β2 involves matrix metalloproteinases and tight junction proteins. J Neuropathol Exp Neurol 67:435–48.
  • Ishii H, Mimura Y, Zahra MH, et al. (2021). Isolation and characterization of cancer stem cells derived from human glioblastoma. Am J Cancer Res 11:441–57.
  • Jia W, Wang Y, Liu R, et al. (2021). Shape transformable strategies for drug delivery. Adv Funct Mater 31:2009765.
  • Jiang B, Zhao Y, Cao J, et al. (2021). Synthesis and preliminary biological evaluation of naproxen-probenecid conjugate for central nervous system (CNS) delivery. Pak J Pharm Sci 34:2197–203.
  • Jin H, Lin X, Gao M, et al. (2020). Peptide-decorated supramolecules for subcellular targeted cancer therapy: recent advances. Front Chem 8:824.
  • Kibria G, Hatakeyama H, Ohga N, et al. (2013). The effect of liposomal size on the targeted delivery of doxorubicin to integrin alpha v beta 3-expressing tumor endothelial cells. Biomaterials 34:5617–27.
  • Kuang J, Song W, Yin J, et al. (2018). iRGD modified chemo-immunotherapeutic nanoparticles for enhanced immunotherapy against glioblastoma. Adv Funct Mater 28:1800025.
  • Lakkadwala S, Rodrigues BD, Sun CW, et al. (2019). Dual functionalized liposomes for efficient co-delivery of anti-cancer chemotherapeutics for the treatment of glioblastoma. J Control Release 307:247–60. (
  • Lam FC, Morton SW, Wyckoff J, et al. (2018). Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nat Commun 9:1991.
  • Lange A, McLane LM, Mills RE, et al. (2010). Expanding the definition of the classical bipartite nuclear localization signal. Traffic 11:311–23.
  • Lei F, Fan W, Li XK, et al. (2011). Design, synthesis and preliminary bio-evaluation of glucose–cholesterol derivatives as ligands for brain targeting liposomes. Chinese Chem Lett 22:831–4.
  • Li H, Zhang P, Luo J, et al. (2019). Chondroitin sulfate-linked prodrug nanoparticles target the golgi apparatus for cancer metastasis treatment. ACS Nano 13:9386–96.
  • Li XY, Zhao Y, Sun MG, et al. (2014). Multifunctional liposomes loaded with paclitaxel and artemether for treatment of invasive brain glioma. Biomaterials 35:5591–604.
  • Lin S, Xu H, Zhang A, et al. (2020). Prognosis analysis and validation of m6A signature and tumor immune microenvironment in glioma. Front Oncol 10:541401.
  • Liu X, Li W, Chen T, et al. (2018). Hyaluronic acid-modified micelles encapsulating gem-C12 and HNK for glioblastoma multiforme chemotherapy. Mol Pharm 15:1203–14.
  • Lombardo SM, Schneider M, Türeli AE, et al. (2020). Key for crossing the BBB with nanoparticles: the rational design. Beilstein J Nanotechnol 11:866–83.
  • Louzoun-Zada S, Jaber QZ, Fridman M. (2019). Guiding drugs to target-harboring organelles: stretching drug-delivery to a higher level of resolution. Angew Chem Int Ed Engl 58:15584–94.
  • Lu L, Zhao X, Fu T, et al. (2020). An iRGD-conjugated prodrug micelle with blood-brain-barrier penetrability for anti-glioma therapy. Biomaterials 230:119666.
  • Ma XW, Gong NQ, Zhong L, et al. (2016). Future of nanotherapeutics: targeting the cellular sub-organelles. Biomaterials 97:10–21.
  • Meng J, Agrahari V, Youm I. (2017). advances in targeted drug delivery approaches for the central nervous system tumors: the inspiration of nanobiotechnology. J Neuroimmune Pharmacol 12:84–98.
  • Meng L, Wang C, Lu Y, et al. (2021). Targeted regulation of blood-brain barrier for enhanced therapeutic efficiency of hypoxia-modifier nanoparticles and immune checkpoint blockade antibodies for glioblastoma. ACS Appl Mater Interfaces 13:11657–71.
  • Minnelli C, Cianfruglia L, Laudadio E, et al. (2018). Selective induction of apoptosis in MCF7 cancer-cell by targeted liposomes functionalised with mannose-6-phosphate. J Drug Target 26:242–51.
  • Mohamed M, Abu Lila AS, Shimizu T, et al. (2019). PEGylated liposomes: immunological responses. Sci Technol Adv Mater 20:710–24.
  • Mojarad-Jabali S, Farshbaf M, Walker PR, et al. (2021). An update on actively targeted liposomes in advanced drug delivery to glioma. Int J Pharm 602:120645.
  • Nishita M, Park SY, Nishio T, et al. (2017). Ror2 signaling regulates golgi structure and transport through IFT20 for tumor invasiveness. Sci Rep 7:1.
  • Oishi T, Koizumi S, Kurozumi K. (2022). Molecular mechanisms and clinical challenges of glioma invasion. Brain Sci 12:291.
  • Ozdemir-Kaynak E, Qutub AA, Yesil-Celiktas O. (2018). Advances in glioblastoma multiforme treatment: new models for nanoparticle therapy. Front Physiol 9:170.
  • Pan Y, Xu C, Deng H, et al. (2022). Localized NIR-II laser mediated chemodynamic therapy of glioblastoma. Nano Today 43:101435.
  • Pang L, Zhu Y, Qin J, et al. (2018). Primary M1 macrophages as multifunctional carrier combined with PLGA nanoparticle delivering anticancer drug for efficient glioma therapy. Drug Deliv 25:1922–31.
  • Park H, Saravanakumar G, Kim J, et al. (2021). Tumor microenvironment sensitive nanocarriers for bioimaging and therapeutics. Adv Healthcare Mater 10:2000834.
  • Patel AP, Fisher JL, Nichols E, et al. (2019). Global, regional, and national burden of brain and other CNS cancer, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet 18:376–93.
  • Peng T, Deng Z, He J, et al. (2020). Functional nucleic acids for cancer theranostics. Coordin Chem Rev 403:213080.
  • Peng Y, Zhao Y, Chen Y, et al. (2018). Dual-targeting for brain-specific liposomes drug delivery system: synthesis and preliminary evaluation. Bioorg Med Chem 26:4677–86.
  • Petrova V, Annicchiarico-Petruzzelli M, Melino G, et al. (2018). The hypoxic tumour microenvironment. Oncogenesis 7:10.
  • Phi LTH, Sari IN, Yang YG, et al. (2018). Cancer stem cells (CSCs) in drug resistance and their therapeutic lmplications in cancer treatment. Stem Cells Int 2018:5416923.
  • Qie Y, Yuan H, von Roemeling CA, et al. (2016). Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci Rep 6:26269.
  • Qiu Y, Liu Y, Wang LM, et al. (2010). Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31:7606–19.
  • Ratnam NM, Gilbert MR, Giles AJ. (2019). Immunotherapy in CNS cancers: the role of immune cell trafficking. Neuro Oncol 21:37–46.
  • Reifenberger G, Wirsching HG, Knobbe-Thomsen CB, et al. (2017). Advances in the molecular genetics of gliomas – implications for classification and therapy. Nat Rev Clin Oncol 14:434–52.
  • Ren ZG, Sun SC, Sun RR, et al. (2020). A metal-polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy. Adv Mater 32:1906024.
  • Rustenhoven J, Kipnis J. (2019). Bypassing the blood-brain barrier. Science 366:1448–9.
  • Saidijam M, Karimi DF, Sohrabi S, et al. (2018). Efflux proteins at the blood-brain barrier: review and bioinformatics analysis. Xenobiotica 48:506–32.
  • Sanita G, Carrese B, Lamberti A. (2020). Nanoparticle surface functionalization: how to improve biocompatibility and cellular internalization. Front Mol Biosci 7:587012.
  • Shahriari M, Zahiri M, Abnous K, et al. (2019). Enzyme responsive drug delivery systems in cancer treatment. J Control Release 308:172–89.
  • Shi Z, Li Q, Mei L. (2020). pH-sensitive nanoscale materials as robust drug delivery systems for cancer therapy. Chin Chem Lett 31:1345–56.
  • Shrestha B, Wang L, Brey EM, et al. (2021). Smart nanoparticles for chemo-based combinational therapy. Pharmaceutics 13:853.
  • Smiley SB, Yun Y, Ayyagari P, et al. (2021). Development of CD133 targeting multi-drug polymer micellar nanoparticles for glioblastoma – in vitro evaluation in glioblastoma stem cells. Pharm Res 38:1067–79.
  • Smith MC, Crist RM, Clogston JD, et al. (2017). Zeta potential: a case study of cationic, anionic, and neutral liposomes. Anal Bioanal Chem 409:5779–87.
  • Sousa F, Dhaliwal HK, Gattacceca F, et al. (2019). Enhanced anti-angiogenic effects of bevacizumab in glioblastoma treatment upon intranasal administration in polymeric nanoparticles. J Control Release 309:37–47.
  • Srinivasarao M, Galliford CV, Low PS. (2015). Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov 14:203–19.
  • Subhan MA, Yalamarty SSK, Filipczak N, et al. (2021). Recent advances in tumor targeting via EPR effect for cancer treatment. JPM 11:571.
  • Sun P, Wu Z, Xiao Y, et al. (2022). TfR-T12 short peptide and ph sensitive cell transmembrane peptide modified nano-composite micelles for glioma treatment via remodeling tumor microenvironment. Nanomed-Nanotechnol 41:102516.
  • Sun X, Chen Y, Zhao H, et al. (2018). Dual-modified cationic liposomes loaded with paclitaxel and survivin siRNA for targeted imaging and therapy of cancer stem cells in brain glioma. Drug Deliv 25:1718–27.
  • Sung H, Ferlay J, Siegel RL, et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–49.
  • Tan J, Duan X, Zhang F, et al. (2020). Theranostic nanomedicine for synergistic chemodynamic therapy and chemotherapy of orthotopic glioma. Adv Sci (Weinh) 7:2003036.
  • Tanaka N, Aoyama T, Kimura S, et al. (2017). Targeting nuclear receptors for the treatment of fatty liver disease. Pharmacol Ther 179:142–57.
  • Tang B, Fang GH, Gao Y, et al. (2015). Lipid-albumin nanoassemblies co-loaded with borneol and paclitaxel for intracellular drug delivery to C6 glioma cells with P-gp inhibition and its tumor targeting. Asian J Pharm Sci 10:363–71.
  • Tang Z, Liu Y, He M, et al. (2019). Chemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew Chem Int Ed Engl 58:946–56.
  • Topalian SL, Hodi FS, Brahmer JR, et al. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–54.
  • Trachootham D, Alexandre J, Huang P. (2009). Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–91.
  • Uram L, Misiorek M, Pichla M, et al. (2019). The effect of biotinylated PAMAM G3 dendrimers conjugated with COX-2 inhibitor (celecoxib) and PPARgamma agonist (Fmoc-L-Leucine) on human normal fibroblasts, immortalized keratinocytes and glioma cells in vitro. Molecules 24:3801.
  • Vankayala R, Kuo CL, Nuthalapati K, et al. (2015). Nucleus-targeting gold nanoclusters for simultaneous in vivo fluorescence imaging, gene delivery, and NIR-light activated photodynamic therapy. Adv Funct Mater 25:5934–45.
  • Vidyarthi A, Agnihotri T, Khan N, et al. (2019). Predominance of M2 macrophages in gliomas leads to the suppression of local and systemic immunity. Cancer Immunol Immunother 68:1995–2004.
  • Waldman AD, Fritz JM, Lenardo MJ. (2020). A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 20:651–68.
  • Wang GK, Norton AS, Pokharel D, et al. (2013). KDEL peptide gold nanoconstructs: promising nanoplatforms for drug delivery. Nanomedicine 9:366–74.
  • Wang H, Wang S, Wang R, et al. (2019). Co-delivery of paclitaxel and melittin by glycopeptide-modified lipodisks for synergistic anti-glioma therapy. Nanoscale 11:13069–77.
  • Wang HB, Li Y, Bai HS, et al. (2017). A cooperative dimensional strategy for enhanced nucleus-targeted delivery of anticancer drugs. Adv Funct Mater 27:1700339.
  • Wang M, Lv CY, Li SA, et al. (2021). Near infrared light fluorescence imaging-guided biomimetic nanoparticles of extracellular vesicles deliver indocyanine green and paclitaxel for hyperthermia combined with chemotherapy against glioma. J Nanobiotechnol 19:210.
  • Wang R, Ke ZF, Wang F, et al. (2015). GOLPH3 overexpression is closely correlated with poor prognosis in human non-small cell lung cancer and mediates its metastasis through upregulating MMP-2 and MMP-9. Cell Physiol Biochem 35:969–82.
  • Wang T, Wang D, Yu H, et al. (2016). Intracellularly acid-switchable multifunctional micelles for combinational photo/chemotherapy of the drug-resistant tumor. ACS Nano 10:3496–508.
  • Weenink B, French PJ, Sillevis Smitt PAE, et al. (2020). Immunotherapy in glioblastoma: current shortcomings and future perspectives. Cancers 12:751.
  • Wei G, Wang Y, Yang G, et al. (2021). Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics 11:6370–92.
  • Wen L, Wen C, Zhang F, et al. (2020). siRNA and chemotherapeutic molecules entrapped into a redox-responsive platform for targeted synergistic combination therapy of glioma. Nanomed 28:102218.
  • Wu M, Zhang H, Tie C, et al. (2018). MR imaging tracking of inflammation-activatable engineered neutrophils for targeted therapy of surgically treated glioma. Nat Commun 9:4777.
  • Xu HL, Fan ZL, ZhuGe DL, et al. (2018). Ratiometric delivery of two therapeutic candidates with inherently dissimilar physicochemical property through pH sensitive core shell nanoparticles targeting the heterogeneous tumor cells of glioma. Drug Deliv 25:1302–18.
  • Xu XD, Saw PE, Tao W, et al. (2017). ROS-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy. Adv Mater 29:1700141.
  • Yan Y, Xu Z, Dai S, et al. (2016). Targeting autophagy to sensitive glioma to temozolomide treatment. J Exp Clin Cancer Res 35:23.
  • Ye C, Pan B, Xu H, et al. (2019). Co-delivery of GOLPH3 siRNA and gefitinib by cationic lipid-PLGA nanoparticles improves EGFR-targeted therapy for glioma. J Mol Med (Berl) 97:1575–88.
  • Yeini E, Ofek P, Albeck N, et al. (2021). Targeting glioblastoma: advances in drug delivery and novel therapeutic approaches. Adv Therap 4:2000124.
  • Yu L, McPhee CK, Zheng L, et al. (2010). Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942–6.
  • Yu RY, Xing L, Cui PF, et al. (2018). Regulating the golgi apparatus by co-delivery of a COX-2 inhibitor and brefeldin A for suppression of tumor metastasis. Biomater Sci 6:2144–55.
  • Zhang C, Bu W, Ni D, et al. (2016). Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew Chem 128:2141–6.
  • Zhang J, Xiao X, Zhu J, et al. (2018). Lactoferrin- and RGD-comodified, temozolomide and vincristine-coloaded nanostructured lipid carriers for gliomatosis cerebri combination therapy. Int J Nanomedicine 13:3039–51.
  • Zhang JH, Stevens MFG, Bradshaw TD. (2012). Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol 5:102–14.
  • Zhao M, van Straten D, Broekman MLD, et al. (2020). Nanocarrier-based drug combination therapy for glioblastoma. Theranostics 10:1355–72.
  • Zhao P, Wang Y, Kang X, et al. (2018). Dual-targeting biomimetic delivery for anti-glioma activity via remodeling the tumor microenvironment and directing macrophage-mediated immunotherapy. Chem Sci 9:2674–89.
  • Zhao Y, Peng Y, Yang Z, et al. (2022). pH-redox responsive cascade-targeted liposomes to intelligently deliver doxorubicin prodrugs and lonidamine for glioma. Eur J Med Chem 235:114281.
  • Zhao Y, Qu B, Wu X, et al. (2014). Design, synthesis and biological evaluation of brain targeting l-ascorbic acid prodrugs of ibuprofen with "lock-in" function. Eur J Med Chem 82:314–23.
  • Zhao Y, Zhao Z, Cui Y, et al. (2021). Redox-responsive glycosylated combretastatin A-4 derivative as novel tubulin polymerization inhibitor for glioma and drug delivery. Drug Dev Res 82:1063–72.
  • Zheng M, Liu Y, Wang Y, et al. (2019). ROS-responsive polymeric sirna nanomedicine stabilized by triple interactions for the robust glioblastoma combinational RNAi therapy. Adv Mater 31:1903277.
  • Zheng Z, Zhang J, Jiang J, et al. (2020). Remodeling tumor immune microenvironment (TIME) for glioma therapy using multi-targeting liposomal codelivery. J Immunother Cancer 8:e000207.